TECHNICAL SPECIFICATIONS
REUSE RESERVOIR EXPANSION AND
PUMP STATION REPLACEMENT

ITB #15-21

Utilities Commission
City of New Smyrna Beach
April 2021

Mead & Hunt, Inc.
Project # 1000721-171380.01

Prepared for:

4401 Eastport Parkway
Port Orange, Fl 32127
Phone: 386-761-6810
www.meadhunt.com
TABLE OF CONTENTS

ITB #15-21
REUSE RESERVOIR EXPANSION AND PUMP STATION REPLACEMENT

DIVISION 1 - GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>Project Requirements</td>
</tr>
<tr>
<td>0101</td>
<td>Summary of Project</td>
</tr>
<tr>
<td>0102</td>
<td>Measurement and Payment</td>
</tr>
<tr>
<td>0109</td>
<td>Reference Specification</td>
</tr>
<tr>
<td>0110</td>
<td>Special Project Procedures</td>
</tr>
<tr>
<td>0120</td>
<td>Project Meetings</td>
</tr>
<tr>
<td>0130</td>
<td>Location, Scope and Special Requirements</td>
</tr>
<tr>
<td>0131</td>
<td>Construction Progress Schedules</td>
</tr>
<tr>
<td>0134</td>
<td>Shop Drawings</td>
</tr>
<tr>
<td>0137</td>
<td>Schedule of Values</td>
</tr>
<tr>
<td>0150</td>
<td>Temporary Facilities</td>
</tr>
<tr>
<td>0150</td>
<td>Mobilization</td>
</tr>
<tr>
<td>0152</td>
<td>Construction Aides</td>
</tr>
<tr>
<td>0160</td>
<td>Material and Equipment</td>
</tr>
<tr>
<td>0165</td>
<td>Start-Up</td>
</tr>
<tr>
<td>0170</td>
<td>Project Closeout</td>
</tr>
<tr>
<td>0171</td>
<td>Cleaning</td>
</tr>
<tr>
<td>0172</td>
<td>Project Record Documents</td>
</tr>
<tr>
<td>0173</td>
<td>Operating and Maintenance Data</td>
</tr>
<tr>
<td>0174</td>
<td>Warranties and Bonds</td>
</tr>
</tbody>
</table>

DIVISION 2 – SITEWORK

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0200</td>
<td>Soil Borings</td>
</tr>
<tr>
<td>0201</td>
<td>Subsurface Investigations</td>
</tr>
<tr>
<td>0205</td>
<td>Demolition</td>
</tr>
<tr>
<td>0210</td>
<td>Excavation, Backfill and Embankment</td>
</tr>
<tr>
<td>0214</td>
<td>Dewatering</td>
</tr>
<tr>
<td>0220</td>
<td>Site Grading</td>
</tr>
<tr>
<td>0283</td>
<td>Chain Link Fencing</td>
</tr>
<tr>
<td>0290</td>
<td>Grassing, Mulching & Sodding</td>
</tr>
</tbody>
</table>
DIVISION 3 – CONCRETE

03300 Cast in Place and Poured Concrete
03400 Precast Concrete Structures

DIVISION 4 – NOT USED

DIVISION 5 – METALS

05540 Access Hatches

DIVISION 6 THROUGH DIVISION 8 - NOT USED

DIVISION 9 – FINISHES

09900 Painting

DIVISION 10 – NOT USED

DIVISION 11 – EQUIPMENT

11210 Pumps-General
11320A Collection System Submersible Pumps

DIVISION 12 – NOT USED

DIVISION 13 – SPECIAL CONSTRUCTION

13300 Instrumentation & Controls General
13360 Fiber Optic Network

DIVISION 14 - NOT USED

DIVISION 15 – MECHANICAL

15050 Basic Mechanical Materials & Methods
15100 Process and Utility Piping
DIVISION 16 – ELECTRICAL

16050 Basic Electrical Material and Methods
16110 Raceways and Conduits
16120 Wires and Cables
16165 Panelboards
16288 Transient Voltage Surge Suppressors
16452 Grounding

END OF TABLE OF CONTENTS
PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: The Work to be done consists of the furnishing of all labor, materials and equipment, and the performance of all Work included in this Contract. The summary of the Work is presented in Section 01010: Summary of Project.

B. Work Included:

1. The Contractor shall furnish all labor, superintendence, materials, plant power, light, heat, fuel, water, tools, appliances, equipment, supplies, and means of construction necessary for proper performance and completion of the Work. The Contractor shall obtain and pay for all necessary local building permits. The Contractor shall perform and complete the work in the manner best calculated to promote rapid construction consistent with safety of life and property and to the satisfaction of the Engineer, and in strict accordance with the Contract Documents. The Contractor shall clean up the Work and maintain it during and after construction, until accepted, and shall do all Work and pay all costs incidental thereto. He shall repair or restore all structures and property that may be damaged or disturbed during performance of the Work.

2. The cost of incidental work described in these Project Requirements, for which there are no specific Contract Items, shall be considered as part of the general cost of doing the Work and shall be included in the prices for the various Contract Items. No additional payment will be made therefore.

3. The Contractor shall provide and maintain such modern plant, tools, and equipment as may be necessary, in the opinion of the Engineer, to perform in a satisfactory and acceptable manner all the Work required by this Contract. Only equipment of established reputation and proven efficiency shall be used. The Contractor shall be solely responsible for the adequacy of his workmanship, materials, and equipment, prior approval of the Engineer notwithstanding.
C. Public Utility Installations and Structures:

1. Public utility installations and structures shall be understood to include all poles, tracks, pipes, wires, conduits, vaults, manholes, and all other appurtenances and facilities pertaining thereto whether owned or controlled by the Owner, other governmental bodies, or privately owned by individuals, firms, or corporations, used to serve the public with transportation, traffic control, gas, electricity, telephone, sewerage, drainage, water, or other public or private property which may be affected by the Work shall be deemed included hereunder.

2. The Contract Documents contain data relative to existing public utility installations and structures above and below the ground surface. These data are not guaranteed as to their completeness or accuracy and it is the responsibility of the Contractor to make his own investigations to inform himself fully of the character, condition, and extent of all such installations and structures as may be encountered and as may affect the construction operations.

3. The Contractor shall protect all public utility installations and structures from damage during the Work. Access across any buried public utility installation or structure shall be made to avoid any damage to these facilities. All required protective devices and construction shall be provided by the Contractor at his expense. All existing public utilities damaged by the Contractor shall be repaired by the Contractor, at his expense. No separate payment shall be made for such protection or repairs to public utility installations or structures.

4. Public utility installations or structures owned or controlled by the Owner or other governmental body which are shown on the Drawings to be removed, relocated, replaced, or rebuilt by the Contractor shall be considered as a part of the general cost of doing the Work and shall be included in the prices bid for the various Contract Items; therefore, no separate payment shall be made.

5. Where public utility installations of structures owned or controlled by the Owner or other governmental body are encountered during the course of the Work, and are not indicated on the Drawings or in the Specifications, and when, in the opinion of the Engineer, removal, relocation, replacement, or rebuilding is necessary to complete the Work under this Contract, such Work shall be accomplished by the utility having jurisdiction, or such Work may be ordered, in writing by the Engineer, for the Contractor to accomplish. If such work is accomplished by the utility having jurisdiction it will be carried out expeditiously, and the Contractor shall give full cooperation to permit the utility to complete the removal, relocation, replacement, or rebuilding as required. If such work is accomplished by the Contractor, it will be paid for as extra work as provided in the Agreement.
6. The Contractor shall, at all times in performance of the Work, employ acceptable methods and exercise reasonable care and skill so as to avoid unnecessary delay, injury, damage, or destruction of public utility installations and structures; and shall, at all times in the performance of the Work, avoid unnecessary interference with, or interruption of, public utility services, and shall cooperate fully with the owners thereof to that end.

7. The Contractor shall give written notice to Owner and other governmental utility departments and other owners of public utilities of the location of his proposed construction operations, at least 48-hours in advance of breaking ground in any area or on any unit of the Work.

8. The maintenance, repair, removal, relocation, or rebuilding of public utility installations and structures, when accomplished by the Contractor as herein provided, shall be done by methods approved by the owners of such utilities.

1.02 DRAWINGS AND PROJECT MANUAL

A. Drawings: When obtaining data and information from the Drawings, figures shall be used in preference to scaled dimensions, and large-scale drawings in preference to small-scale drawings.

B. Supplementary Drawings:

1. When, in the opinion of the Engineer, it becomes necessary to explain more fully the Work to be done or to illustrate the Work further or to show any changes which may be required, drawings known as Supplementary Drawings, with specifications pertaining thereto, will be prepared by the Engineer, and the Contractor will be furnished one (1) complete set of reproducible Mylar sepias (24 inches by 36 inches) and one (1) reproducible copy of the Project Manual.

2. The Supplementary Drawings shall be binding upon the Contractor with the same force as the Contract Drawings. Where such Supplementary Drawings require either less or more than the estimated quantities of Work, credit to the Owner or compensation therefore to the Contractor shall be subject to the terms of the Agreement.
C. Contractor to Check Drawings and Data:

1. The Contractor shall verify all dimensions, quantities, and details shown on the Drawings, Supplementary Drawings, schedules, Specifications, or other data received from the Engineer, and shall notify him of all errors, omissions, conflicts, and discrepancies found therein. Failure to discover or correct errors, conflicts, or discrepancies shall not relieve the Contractor of full responsibility for unsatisfactory work, faulty construction, or improper operation resulting there from, nor from rectifying such conditions at his own expense. He will not be allowed to take advantage of any errors or omissions, as full instructions will be furnished by the Engineer, should such errors or omissions be discovered.

2. All schedules are given for the convenience of the Engineer and the Contractor and are not guaranteed to be complete. The Contractor shall assume all responsibility or the making of estimates of the size, kind, and quality of materials and equipment included in work to be done under the Contract.

D. Specifications: The Technical Specifications consist of three (3) parts: General, Products, and Execution. The General part of a Specification contains General Requirements which govern the Work. The Products and Execution parts modify and supplement the General Requirements by detailed requirements for the Work and shall always govern whenever there appears to be a conflict.

E. Intent:

1. All Work called for in the Specifications applicable to this Contract, but not shown on the Drawings in their present form, or vice versa, shall be of like effect as if shown or mentioned in both. Work not specified in either the Drawings or in the Specifications, but involved in carrying out their intent or in the complete and proper execution of the Work, is required and shall be performed by the Contractor as though it were specifically delineated or described.

2. The apparent silence of the Specifications as to any detail, or the apparent omission from them of a detailed description concerning any work to be done and materials to be furnished, shall be regarded as meaning that only the best general practice is to prevail and that only material and workmanship of the best quality is to be used, the interpretation of these Specifications shall be made upon that basis.
1.03 MATERIALS AND EQUIPMENT

A. Manufacturer:

1. All transactions with the manufacturers or subcontractors shall be through the Contractor, unless the Contractor shall request and at the Engineer's option, that the manufacturer or subcontractor deal directly with the Engineer. Any such transactions shall not in any way release the Contractor from his full responsibility under this Contract.

2. Any two (2) or more pieces of material or equipment of the same kind, type, or classification, and being used for identical types of service, shall be made by the same manufacturer.

B. Delivery:

1. The Contractor shall deliver materials in ample quantities to ensure the most speedy and uninterrupted progress of the Work so as to complete the Work within the allotted time.

2. The Contractor shall also coordinate deliveries in order to avoid delay in, or impediment of, the progress of the work of any related Contractor.

C. Tools and Accessories:

1. The Contractor shall, unless otherwise stated in the Contract Documents, furnish with each type, kind, or size of equipment, one (1) complete set of suitably marked high grade special tools and appliances which may be needed to adjust, operate, maintain, or repair the equipment. Such tools and appliances shall be furnished in approved painted steel cases, properly labeled and equipped with good grade cylinder locks and duplicate keys.

2. Spare parts shall be furnished as specified herein and as recommended by the manufacturer necessary for the operation of the equipment, not including materials required for routine maintenance.

3. Each piece of equipment shall be provided with a substantial nameplate, securely fastened in place and clearly inscribed with the manufacturer's name, year of manufacture, serial number, weight, and principal rate data.

D. Service of Manufacturer's Engineer:

1. The Contract Prices for equipment shall include the cost of furnishing a competent and experienced engineer or superintendent who shall represent the manufacturer and shall assist the Contractor, when required, to install,
adjust, test, and place in operation, the equipment in conformity with the Contract Documents.

2. After the equipment is placed in permanent operation by the Owner, such engineer or superintendent shall make all adjustments and tests required by the Engineer to prove that such equipment is in proper and satisfactory operating condition, and shall instruct such personnel as may be designated by the Owner in the proper operation and maintenance of such equipment.

1.04 INSPECTION AND TESTING

A. General:

1. For tests specified to be made by the Contractor, the testing personnel shall make the necessary inspections and tests, and the reports thereof shall be in such form as will facilitate checking to determine compliance with the Contract Documents. Five (5) copies of the reports shall be submitted, and authoritative certification thereof must be furnished to the Engineer as a prerequisite for the acceptance of any material or equipment.

2. If, in the making of any test of any material or equipment, it is ascertained by the Engineer that the material or equipment does not comply with the Contract Documents, the Contractor will be notified thereof, and he will be directed to refrain from delivering said material or equipment, or to remove it promptly from the site or from the Work and replace it with acceptable material, without cost to the Owner.

3. Tests of electrical and mechanical equipment and appliances shall be conducted in accordance with the recognized test codes of the ANSI, ASME, or the IEEE, except as may otherwise be stated herein.

4. The Contractor shall be fully responsible for the proper operation of equipment during testing and instruction periods and shall neither have nor make any claim for damage which may occur to equipment prior to the time when the Owner formally takes over the operation thereof.

B. Costs:

1. All inspection and testing of materials furnished under this Contract will be provided by the Contractor, unless otherwise expressly specified.

2. The cost of shop and field tests of equipment and of certain other tests specifically called for in the Contract Documents shall be borne by the Contractor, and such costs shall be deemed to be included in the Contract Price.
3. Materials and equipment submitted by the Contractor as the equivalent to those specifically named in the Contract may be tested by the Owner for compliance. The Contractor shall reimburse the Owner for the expenditures incurred in making such tests of materials and equipment which are rejected for non-compliance.

C. Certificate of Manufacture:

1. Contractor shall furnish to Engineer authoritative evidence in the form of a certificate of manufacture that the materials to be used in the Work have been manufactured and tested in conformity with the Contract Documents.

2. These certificates shall be notarized and shall include copies of the results of physical tests and chemical analyses, where necessary, that have been made directly on the product or on similar products of the manufacturer.

D. Shop Tests:

1. Each piece of equipment for which pressure, duty, capacity, rating, efficiency, performance, function, or special requirements are specified shall be tested in the shop of the maker in a manner which shall conclusively prove that its characteristics comply fully with the requirements of the Contract Documents.

2. Five (5) copies of the manufacturer's actual test data and interpreted results thereof, accompanied by a certificate of authenticity sworn to by a responsible official of the manufacturing company and/or independent laboratory, shall be submitted to the Engineer for approval.

3. The cost of shop tests and of furnishing manufacturer's preliminary and shop test data of operating equipment shall be borne by the Contractor.

E. Start-up Tests:

1. As soon as conditions permit, the Contractor shall furnish all labor, materials, and instruments and shall make start-up tests of equipment.

2. If the start-up tests disclose any equipment furnished under this Contract which does not comply with the requirements of the Contract Documents, the Contractor shall, prior to demonstration tests, make all changes, adjustments, and replacements required. The furnishing Contractor shall assist in the start-up tests as applicable.
F. Demonstration Tests:

1. Prior to Contractor's request for a Substantial Completion inspection, all equipment and piping installed under this Contract shall be subjected to demonstration tests as specified or required to prove compliance with the Contract Documents.

2. The Contractor shall furnish labor, fuel, energy, water, and all other materials, equipment, and instruments necessary for all demonstration tests, at no additional cost to the Owner. Contractor shall assist in the demonstration tests as applicable.

1.05 LINES AND GRADES

A. Grade:

1. All work under this Contract shall be constructed in accordance with the lines and grades shown on the Drawings, or as given by the Engineer. The full responsibility for keeping alignment and grade shall rest upon the Contractor.

2. The vertical benchmarks provided is USGS “Public Records” monumentation and the horizontal control is the monumentation on plats contained in the “Public Records of Volusia County.”

B. Surveys:

1. The Contractor shall furnish and maintain, at his own expense, stakes and other such materials.

2. The Contractor shall check such reference marks by such means as he may deem necessary and, before using them, shall call the Engineer's attention to any inaccuracies.

3. The Contractor shall, at his own expense, establish all working or construction lines and grades as required from the reference marks set by the Engineer, and shall be solely responsible for the accuracy thereof. He shall, however, be subject to the check and review by the Engineer.

C. Safeguarding Marks:

1. The Contractor shall safeguard all points, stakes, grade marks, monuments, and benchmarks made or established on the Work, bear the cost of re-establishing them if disturbed, and bear the entire expense of rectifying work improperly installed due to not maintaining or protecting or to removing without authorization such established points, stakes, and marks.
2. The Contractor shall safeguard all existing and known property corners, monuments, and marks adjacent to but not related to the Work and shall bear the cost of re-establishing them if disturbed or destroyed.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
PART 1 - GENERAL

1.01 WORK COVERED BY CONTRACT DOCUMENTS

A. This Contract is for the construction of the **REUSE RESERVOIR EXPANSION AND PUMP STATION REPLACEMENT**. The work consists of furnishing all labor, equipment, and materials for the construction of the facilities consisting of, but not limited to, the following:

 Expansion of the Utilities Commission’s existing reclaimed water reservoir and replacement of the reuse pump station and intake structure.

B. The Contractor shall furnish all labor, equipment, tools, services and incidentals to complete all Work required by these Specifications and as shown on the Drawings.

C. The Contractor shall perform the Work complete, in place, and ready for continuous service, and shall include repairs, testing, permits, cleanup, replacements and restoration required as a result of damages caused during this construction.

D. All materials, equipment, skills, tools and labor which is reasonably and properly inferable and necessary for the proper completion of the Work in a substantial manner and in compliance with the requirements stated or implied by these Specification or Drawings shall be furnished and installed by the Contractor without additional compensation, whether specifically indicated in the Contract Documents or not.

E. The Contractor shall comply with all City, County, State, Federal, and other codes which are applicable to this Project.

1.02 CONTRACTOR’S USE OF PREMISES

A. The Contractor shall assume full responsibility for the protection and safekeeping of products and materials at the job site. If additional storage or work areas are required, they shall be obtained by the Contractor at no additional cost to the Owner.

1.03 PROJECT SEQUENCE
A. The Contractor shall establish his work sequence based on the use of crews to facilitate completion of construction and testing within the specified Contract time.
PART 1 - GENERAL

A. Separate payment will be made only for the items of work described herein and listed on the Bid Form. Any related work not specifically listed, but required for satisfactory completion of the work, shall be considered to be included in the scope of the appropriate listed work items.

B. The Contractor's attention is called to the fact that cleanup is considered a part of the work of construction. No payment will be made until cleanup is essentially complete.

C. No separate payment will be made for the following items and the cost of such work shall be included in the applicable pay items of work if not shown as a separate pay item.

 1. Clearing and grubbing.
 2. Excavation, including necessary pavement base removal.
 3. Shoring and sheeting.
 4. Dewatering and disposal of surplus water.
 5. Structural Fill.
 7. Grading.
 8. Replacement of unpaved roadways, grass, and shrubbery plots.
 9. Cleanup.
 10. Testing and placing system in operation.
 11. Any material and equipment required to be installed and utilized for the test.
 12. Pipe, structures, pavement replacement and/or appurtenances included within the limits of lump sum work.
 13. Maintaining the existing quality of service during construction.
 14. Appurtenant work as required for a complete and operable system.
 15. Maintaining or detouring of traffic

D. No payment shall be made for work constructed outside the authorized limits of work.

PART 2 - MATERIALS AND EQUIPMENT

2.01 Mobilization/Demobilization Bid Item 1

Mobilization shall be the preparatory work and operations in mobilizing for beginning work on the project, including, but not limited to, those operations necessary for the movement of personnel, equipment, supplies and incidentals to the project site, and for the establishment of temporary facilities, safety equipment and first aid supplies, sanitary and other facilities, as required by the Contract Documents and applicable laws and regulations. The cost of bonds, required insurance, and
any other preconstruction expense necessary for the start of work shall be included in this item, excluding the cost of construction materials.

Demobilization to include, but not limited to, all operations necessary for the removal of personnel, equipment, any temporary facilities, supplies, and incidentals from the project site. Overall site restoration and cleaning is included in this item.

2.02 Field Locate & Expose Existing Utilities Bid Item 2

Payment at the applicable lump sum price will be made based on completion of exposing, as specified in Section 01300, existing Utility Commission utilities and all other utilities within the contract work limits. The contract lump sum price will be full compensation for all materials and work necessary to complete the item within the right-of-ways or easements shown on the contract plans.

2.03 Erosion Protection Bid Item 3

Lump sum payment will be made based on completion of soil and erosion control in accordance with the contract plans and specifications and best management practices. Payment will be full compensation for all materials, labor, equipment and work necessary to complete the work in accordance with the contract plans and specifications, St. Johns River Water Management District and Florida Department of Environmental Protection. Application for NPDES permit including NOI and application fee are the responsibility of the Contractor.

2.04 Reservoir Excavation Bid Item 4

Payment will be made at the contract unit price for excavation and off-site trucking of excess fill. The unit price shall be full compensation for all material, equipment and labor required to excavate and remove excess fill from reservoir. This item excludes fill material used to construct berms and embankments and on-site stockpile of 20,000± CY. Trucking tickets shall be used to track payment for this item.

2.05 Reservoir Berms and Embankments Bid Item 5

Lump sum payment shall be made for constructing berms, embankments, swales, soil/erosion control, signage, demolition, grading, sodding, dewatering, clearing/grubbing, berming, pumping and all other restoration and site work shown on the plans or listed in the specifications to complete the construction. This item assumes approximately 16,000CY (±1,000CY) of fill from on-site sources, including the stockpile of 20,000CY.

2.06 Demolition of Existing Pump Station Bid Item 6

Lump sum payment shall be made for the demolition, removal, abandonment, filling, and/or other work to existing facilities as shown on the plans and as required to complete the required work. Demolished facilities shall be shown on the as-builts. UC shall have right to all abandoned equipment. Contractor shall deliver to UC or dispose of properly. Contractor is responsible for proper disposal of all removed materials.
2.07 Construction of New Wetwell, Intake and Pump Station

Lump sum payment shall be made for the construction of a new wetwell, intake and pump station as shown on the drawings and described in the specifications. Lump sum price shall be full compensation for all materials, labor and equipment necessary for a complete installation. This item shall include intake piping, screens, backwash piping, pumps, above ground piping, valves, structures, lids, hatches, mechanical equipment, dewatering, shade structure, siltation and erosion control, backfill, compaction, concrete surfaces and sod restoration.

2.08 Yard Piping

Lump sum payment will be made for construction of the site/yard piping improvements, including all yard piping and valves, anticipated fittings, connections to pipe systems, trench safety, restoration, and pressure testing. Locating of existing utilities by UC staff does not relieve the Contractor from responsibility to locate and expose existing utilities, including hand-digging as necessary. The lump sum price shall be full payment for all labor, materials, and equipment required for a complete and operable system.

2.09 Stabilized Driveway

Payment will be made at the contract unit price for all stabilized driveways as depicted on the plans and described in the specifications.

2.10 Fencing and Signs

Payment shall be made for each linear foot of fencing or each gate installed per the drawings and specifications including fabric, poles, bracing, barbed wire, hinges, hardware and other necessary work and appurtenances. Payment also includes installation of Reclaimed Water Warning signs at the locations shown on the plans.

2.11 Electrical/Instrumentation

Lump sum payment will be made for the electrical and instrumentation work as described in the plans and specifications. This payment will be made to furnish and install all electrical equipment, raceways/conduit and wiring required for an operating system. This includes control panels, devices and all integration of existing and new components.

2.12 Permits & Allowances

An allowance of $25,000 is established to reimburse costs associated with Building Permit fees, inspections and related expenses. The Contractor will be reimbursed at actual cost for invoices associated with this item. This item may only be used with prior written approval by the Engineer.

2.13 10% Contingency

The Bid Form includes a Project “Contingency” line item for project field conditions and/or additional adjustments to the work. The amount for this line item shall be 10% of the Total Bid. The Contingency shall be used at the discretion of the Owner for construction work as specified in the Contract Documents. The Contractor shall not consider these funds as part of the construction
operating budget. Written approval by the Owner is required prior to expenditure of any of these funds. The Engineer and Owner shall approve charges against contingencies prior to invoicing. Any established unit prices shall prevail. If there are no unit prices established for the work, then the Contractor shall be reimbursed as defined in the General Conditions.

END OF SECTION
PART 1 - GENERAL

1.01 GENERAL

A. Applicable Publications. Whenever in these Specifications references are made to published specifications, codes, standards, or other requirements, it shall be understood that wherever no date is specified, only the latest specifications, standards, or requirements of the respective issuing agencies which have been published as of the date that the Work is advertised for bids, shall apply; except to the extent that said standards or requirements may be in conflict with applicable laws, ordinances, or governing codes. No requirements set forth herein or shown on the Drawings shall be waived because of any provision of or omission from said standards or requirements.

B. Assignment of Specialists. In certain instances, specification test requires (or implies) that specific work is to be assigned to specialist or expert entities who must be engaged for the performance of the Work. Such assignments shall be recognized as special requirements over which the Contractor has no choice or option. These requirements shall not be interpreted so as to conflict with the enforcement of building codes and similar regulations governing the Work. They are not intended to interfere with local union jurisdiction settlements and similar conventions. Such assignments are intended to establish which party or entity involved in a specific unit of Work is recognized as "expert" for the indicated construction processes or operations. Nevertheless, the final responsibility for fulfillment of the entire set of Contract requirements remains with the Contractor.

1.02 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Without limiting the generality of other requirements of the Specifications, all Work specified herein shall conform to or exceed the requirements of such referenced documents which are not in conflict with the requirements of these Specifications or applicable codes.

B. References herein to "Building Code" shall mean the latest edition of the Florida Building Code. The latest edition of the code as approved and used by the local agency as of the date of award as adopted by the agency having jurisdiction shall apply to the Work herein, including all addenda, modifications, amendments, or other lawful changes thereto.
C. In case of conflict between codes, reference standards, Drawings, and the other Contract Documents, the most stringent requirements shall govern. All conflicts shall be brought to the attention of the Engineer for clarification and directions prior to ordering or providing any materials or labor. The Contractor shall bid the most stringent requirements.

D. Applicable Standard Specifications. The Contractor shall construct the Work specified herein in accordance with the requirements of the Contract Documents and the referenced portions of those referenced codes, standards, and specifications listed.

PART II - PRODUCTS (Not Used)

PART III - EXECUTION (Not Used)

END OF SECTION
PART 1 - GENERAL

1.01 PUBLIC NUISANCE

A. The Contractor shall not create a public nuisance including, but not limited to, encroachment on adjacent lands, flooding of adjacent lands, or excessive noise.

B. The Contractor shall follow all New Smyrna Beach Codes and Ordinances with respect to noise and work hours.

C. No extra charge may be made for time lost due to work stoppage resulting from the creation of a public nuisance.

1.02 JURISDICTIONAL DISPUTES

A. It shall be the responsibility of the Contractor to pay all costs that may be required to perform any of the Work shown on the Drawings or specified herein in order to avoid any work stoppages due to jurisdictional disputes. The basis for subletting Work in question, if any, shall conform to precedent agreements and decisions on record with the Building and Construction Trades Department, AFL-CIO, dated June, 1973, including any amendments thereto.

1.03 EXCAVATION AROUND AND CONNECTION TO EXISTING UTILITIES

A. It is essential that the Contractor understand that the existing Owner’s facilities must be kept in operation with minimal impact and shut-downs. To this end, the Contractor shall coordinate and consult with the Owner's operating personnel before excavating around or cutting into existing utilities on the site. Existing utilities of major concern are water, sanitary sewer, electrical power conduits, phone and television cables, instrumentation conduits, and cables.

B. Some areas within the construction site may require hand excavation due to the congestion of underground piping systems and/or due to the criticality of piping systems that may be damaged unavoidably during machine excavation.
C. Cover for underground piping shall not be less than that indicated on the Drawings, up to a minimum of 30 inches of cover where obtainable. In areas where other piping conflicts preclude the minimum cover desired, the piping shall be laid to provide the maximum cover obtainable.

D. All connections to existing piping systems shall be made as shown or indicated on the Drawings after consultation, cooperation, and coordination with the Owner’s management personnel. Some such connections may have to be made during off-peak hours (late night or early morning hours). The Contractor shall give a minimum of three (3) working days notice to the Owner when tie-ins with the existing plant utilities are required.

E. For major utility pipeline tie-ins and relocations, the Contractor shall submit a detailed Plan of Action for review and approval by the Owner and the Engineer. No major utility relocation or tie-ins shall proceed until the Plan of Action for that Work is approved.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01200
PROJECT MEETINGS

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. The Contractor shall coordinate with the Engineer to schedule and administer the preconstruction meeting, resident meeting, utility coordination, periodic progress meetings, and specifically called meetings throughout the progress of the Work.

2. The Engineer shall:
 a. Prepare agenda for meetings.
 b. Make physical arrangements for meetings.
 c. Preside at meetings.
 d. Take and distribute meeting minutes.

3. The Contractor shall:
 a. Attend all meetings along with pertinent subcontractors and suppliers.
 b. Appoint attendees who are qualified and authorized to act on behalf of the entity each represents.
 c. Provide requested information at meetings.

4. The Owner shall:
 a. Attend meetings to ascertain that the Work is expedited consistent with Contract Documents and construction schedules.

B. Related Requirements Described Elsewhere:

1. Progress Schedules: Section 01310.
2. Shop Drawings: Section 01340.
3. Project Record Documents: Section 01720.

1.02 PRECONSTRUCTION MEETING

A. Purpose: To initiate coordination of contractual requirements prior to start of work.

B. Scheduling: Engineer will schedule a preconstruction meeting after execution of the Contract. Invites shall be sent via electronic mail.

C. Location: A local site, convenient for all parties, designated by the Engineer.

D. Attendance:

1. Owner's representative.

01200-1
2. Engineer and his sub-consultants.
3. Resident project representative.
4. Contractor and his superintendent.
5. Major subcontractors.
6. Representatives of major suppliers and manufacturers, as appropriate.
7. Governmental and franchised utility representatives, as appropriate.
8. Permit agency representatives, as appropriate.
9. Funding agency representatives, as appropriate.
10. Others as requested by the Contractor, Owner, and Engineer.

C. Suggested Agenda:

1. Introductions and Roles
2. Contract Execution and Dates
 a. Contracts
 b. Contract Time/Dates
 c. Copies of Conformed Documents
3. Communications
 a. Lines of Communication
 b. Coordination Meetings
 c. Contact List
 d. Requests for Information (RFIs)
4. Preconstruction Matters
 a. Submittals
 b. Material Acquisition
 c. Mobilization
 d. Permitting
5. Construction/Coordination
 a. Working Days/Hours
 b. Change Orders
 c. Locating Existing Facilities
 d. Demolition
 e. Testing
 f. Updated Schedules
6. Pay Requests
 a. Process
 b. Schedule of Values
 c. Stored Materials
 d. Preliminary As-Builts
7. Contract Closeout

01200-2
a. Substantial Completion
b. Punch-list
c. Final Acceptance
d. Warranty
e. Final Payment

1.03 RESIDENT MEETING(S)

A. Purpose: To present construction approach to effected residents and to allow residents to ask questions concerning such.
B. Scheduling: Engineer/Owner will schedule resident meeting(s) after preconstruction meeting is held, but before construction begins. Invites shall be distributed via electronic mail and hard copy flyers. Contractor shall assist in the distribution of flyers.
C. Location: A local site, convenient for all parties, designated by the Engineer/Owner.
D. Attendance:
 1. Owner's representative.
 2. Engineer.
 3. Resident project representative.
 4. Contractor and his superintendent.
 5. Major subcontractors, as appropriate.
 6. Residents.
E. Suggested Agenda: To be determined by Engineer/Owner

1.04 UTILITY COORDINATION MEETING(S)

A. Purpose: To discuss the coordination of the construction with existing and proposed utilities.
B. Scheduling: Engineer will schedule utility coordination meeting(s) as needed. These meetings may be held in conjunction with Progress Meetings. Invites shall be distributed via electronic mail.
C. Location: A local site, convenient for all parties, designated by the Engineer.
D. Attendance:
 1. Owner's representative.
 2. Engineer.
 3. Resident project representative.
 4. Contractor and his superintendent.
 5. Major subcontractors, as appropriate.
E. Suggested Agenda: To be determined by Engineer.

1.05 PROGRESS MEETINGS
A. Purpose: To discuss the progress of the construction and projected work activities.
B. Scheduling: Engineer will schedule progress meetings on a regular basis at a minimum frequency of once per week and at a maximum frequency of once per month. Invites shall be distributed via electronic mail.
C. Location: A local site, convenient for all parties, designated by the Engineer.
D. Attendance:
 1. Owner's representative.
 2. Engineer and sub-consultants, as appropriate.
 3. Resident project representative.
 4. Contractor and his superintendent.
 5. Major subcontractors, as appropriate.
 6. Utility representatives, as appropriate.
 7. Permit agency representatives, as appropriate.
 8. Funding agency representatives, as appropriate.
E. Suggested Agenda:
 1. Work progress since last meeting
 2. Work scheduled this period
 3. Field observations, problems and conflicts.
 4. Construction schedule
 a. Status of current schedule
 b. Issues impacting schedule
 c. Fabrication and delivery schedules
 d. Corrective measures to regain projected schedule
 5. Submittals
 6. RFIs
 7. Pending Changes and Substitutions
 8. Quality Control
 9. Pay Requests
 10. Other Business

PART 2- PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
1.01 The Contractor shall not have any right in property in any materials taken from any excavation and he shall not remove any earth, sand or other material from the lines of the work before the excavation is refilled except upon direction of the Engineer. The provisions of this paragraph shall not be construed as relieving the Contractor of any kind of his obligations to remove and dispose of any of the material excavated, with or without rehandling, at his cost and expense as provided in these specifications.

1.02 From investigations, including surveys made at the site, it is assumed that physical conditions are approximately as indicated on the drawings, but the nature of the materials below the surface, the depth to satisfactory foundations, or the stability of beds or banks or quantity of groundwater are not guaranteed.

1.03 Where reference is made within these documents to government specifications, or those of well known organizations such as ASTM, ASA, ASME, etc., the latest editions shall be used, any or all references in these documents to earlier stated editions notwithstanding.

1.04 The Contractor shall take all necessary precautions to prevent damage to existing Utility Commission utilities which are to remain in service during any of his construction operations. Should such utilities be damaged by the Contractor, he shall be required to replace, or repair same, to the satisfaction of the Engineer, at no additional cost to the Owner.

1.05 Certain information regarding the reputed presence, size, character, and location of existing underground structure, pipes and conduits has been shown on the contract drawings. The location of underground structures shown may be inaccurate and other obstructions than those shown may be encountered. The Contractor distinctly agrees that the Engineer and the Owner are not responsible for the correctness or sufficiency of the information given; that in no event is this information to be considered as a part of the Contract; that he shall have no claim for delay or extra compensation on account of incorrectness of information given; or on account of insufficiency or absence of information regarding obstructions either revealed or not revealed by the drawings; and that he shall have no claim for relief from any obligation or responsibility under this Contract, in case the location, size or character of any pipe or other underground structure is encountered that is not shown on the drawings.

1.06 All dewatering and pumping necessary to accomplish the work of this Contract shall be performed by the Contractor at no extra or additional cost to the Owner. Any permits required shall be the responsibility of the Contractor.

1.07 Examination of Contract Documents and Site. Before submitting a Bid each Contractor must (a) examine the Contract Documents thoroughly, (b) visit the site to familiarize himself with local conditions that may in any manner affect cost, progress or performance of the work, (c) familiarize himself with federal, state and local laws, ordinance, rules and regulations.
that may in any manner affect cost, progress or performance of the work, and (d) study and carefully correlate Bidder's observations with the Contract Documents.

Note: Site is a restricted access facility. Bidders are discouraged from entering or requesting to enter site prior to bid.

1.08 Attention is directed to the requirements of the following agencies with regard to permits and construction of utilities within their rights of way or jurisdiction.

A. City of New Smyrna Beach.
B. FDEP
C. St. Johns River Water Management District

1.09 Construction shall be limited to weekday "day light" working hours. No "weekend", night time", or "holiday" work shall be performed without obtaining permission in advance from the Project Engineer and the Owner.

1.10 The Contractor shall provide an English speaking full time superintendent to supervise sub-contractors and provide direction to field crews. The Engineer’s representative shall not be responsible for providing direction to sub-contractor or field crews. The Contractor’s superintendent shall not be verbally or physically abusive to citizens or other project personnel. Use of “foul” language in the presence of or belligerence towards citizens or project representatives shall be grounds for immediate replacement of the superintendent at no cost to the owner.

1.11 The Contractor acknowledges that he is responsible for complying with all aspects of the Florida Trench Safety Act (90-96, Laws of Fla.) effective October 1, 1990. He assumes all responsibility and costs entailed.

1.12 All unit pricing shall remain valid for the duration of the contract.

1.13 Florida Sales Tax on materials, as well as all other customary taxes on construction activities, shall be paid for by the Contractor at no additional expense to the Owner.

1.14 Limitations on the Engineer's Responsibilities

A. Neither the Engineer's authority to act under this Paragraph nor any decision made by him in good faith either to exercise or not exercise such authority shall give rise to any duty or responsibility of the Engineer to the Contractor, any Subcontractor, any of their agents or employees or any other person performing any of the work.

B. The Engineer will not be responsible for the construction means, methods, techniques, sequences or procedures, or the safety precautions and programs incident thereto, and he will not be responsible for the Contractor's failure to perform the work in accordance with the Contract Documents.
C. The Engineer will not be responsible for the acts or omissions of the Contractor, any subcontractors, or any of his or their agents or employees, or any other persons performing any of the work.

1.15 Project and completion is defined as having the new I&C system in place, tested and certified for use, having the control modifications complete and restoration complete. This includes all well improvements and related work.

1.16 The Contractor shall make his own provisions for materials security. Any City provided work areas shall be returned to its original or better condition upon the completion of the project. Sodding of any disturbed areas utilized by the Contractor for work area will be accomplished by the Contractor at no additional cost to the City. Separate payment for this work will not be made and shall be included in the appropriate contract work items by the Contractor in the bid proposal.

1.17 INDEMNIFICATION

The following Indemnification Agreement shall be a provision of this contract and also shall be endorsed onto or attached to the insurance policy and Certificate of Insurance.

“The Contractor agrees to protect, defend and pay on behalf of, and hold Utilities Commission, City of New Smyrna Beach and its appointed officials, officers, employees, volunteers, representatives, agents, and affiliates free and harmless from and against all claims for personal or bodily injury or death, or property damage or destruction of tangible property including loss of use thereof, losses, penalties, damages, settlements, costs, charges, professional fees or other expenses of every kind and character in connection with and arising directly or indirectly out of this agreement and/or performance thereof, unless such claims are a result of UTILITIES COMMISSION, CITY OF NEW SMYRNA BEACH sole negligence. This indemnification clause includes claims made by the employees and subcontractors of the Contractor against the Owner and the Contractor hereby waives its entitlement, if any, to immunity under Section 440.11, Florida Statues. Nothing contained herein shall be construed as a waiver of any immunity from or a limitation of liability the Utilities Commission, City of New Smyrna Beach may have under the doctrine of sovereign immunity or Chapter 768.28, Fla. Stat. This indemnification provision shall survive the completion of the project and shall be in full force and effect beyond the completion of the project or termination of this contract.

“The Contractor agrees to protect, defend and pay on behalf of, and hold the ENGINEER and its officers, employees, and affiliates free and harmless from and against all claims for personal or bodily injury or death, or property damage or destruction of tangible property including loss of use thereof, losses, penalties, damages, settlements, costs, charges, professional fees or other expenses of every kind and character in connection with and arising directly or indirectly out of this agreement and/or performance thereof, unless such claims are a result of the ENGINEER’S sole negligence. This indemnification clause includes claims made by the employees and subcontractors of the Contractor against the ENGINEER. This indemnification provision shall survive the completion of the project and shall be in full force and effect beyond the completion of the project or termination of this contract.
The Contractor shall be responsible for such requirements through the date of final acceptance of the project by the Utilities Commission, City of New Smyrna Beach. With regard to the Contractor’s indemnification obligation for products and completed operations, the Contractor shall be responsible for a minimum period of at least one year subsequent to the Utilities Commission, City of New Smyrna Beach’s acceptance of the product or completed operation.”

1.18 The contract requires demolition, removal and replacement of an existing reuse pump station control panel. Staging the replacement of that panel while maintaining system operation is important. The Contractor will develop a staging plan to describe required activities. The Contractor shall prepare a detailed schedule and ‘staging’ plan that describes the proposed means and methods and order of construction. At a minimum, the plan will indicate time frames for any temporary ‘outages’ and/or times that operator monitoring and control may be interrupted, it will also detail the order of construction.
PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. Promptly after award of the Contract, prepare and submit to the Engineer estimated construction progress schedules demonstrating complete fulfillment of all Contract requirements utilizing a Critical Path Method (hereinafter referred to as CPM) in planning, coordinating, and performing the Work under this Contract (including all activities of subcontractors, equipment vendors, and suppliers). The principles and definition of CPM terms used herein shall be as set forth in the Associated General Contractors of America (AGC) publication, The Use of CPM in Construction, A Manual for General Contractors and the Construction Industry, latest edition, but the provisions of this Specification shall govern the planning, coordinating, and performance of the Work.

2. Submit revised progress schedules on a monthly basis. No partial payments shall be approved until there is an approved construction progress schedule on hand.

B. Related Requirements Described Elsewhere:

2. Summary of Project: Section 01010.
3. Project Meetings: Section 01200.
4. Application for Payment: Section 01027
5. Shop Drawings: Section 01340.
6. Schedule of Values: Section 01370.

1.02 QUALIFICATIONS

A. A statement of computerized CPM capability shall be submitted in writing prior to the award of the Contract and shall verify that either Contractor's organization has in-house capability to use the CPM technique or that Contractor will employ a CPM consultant who is so qualified.

B. In-house capability shall be verified by description of construction projects to which Contractor or Contractor's consultant has successfully applied computerized CPM
and shall include at least two (2) projects valued at least half the expected value of this project.

1.03 FORM OF SCHEDULES

A. Prepare schedules in the form of a horizontal bar chart.

1. Provide a separate horizontal bar for each trade or operation within each structure or item.

2. Horizontal time scale:
 a. Show starting and completion dates for each activity in terms of the number of days after Notice to Proceed. All completion dates shown shall be within the period specified for contract completion.
 b. Identify the first work day of each month.

3. Scale and Spacing: Sufficient to allow space for notations and future revisions.

B. Format of Listings: The chronological order of the start of each item of work for each structure.

C. Identification of Listings: By major specification section numbers as applicable and by utility.

D. Construction Progress Schedules shall be computer generated using software equal to Primavera Project Planner for Windows by Primavera Systems, Inc., Bala Cynwyd, P.A., or approved equal.

1.04 CONTENT OF SCHEDULES

A. Construction Progress Schedule:

1. Show the complete sequence of construction by activity and by structure.

2. Show the dates for the beginning and completion of each major element of construction in no more than a two (2) week increment scale. Specifically list, but do not limit to:

 a. Shop Drawing Schedule.
 b. Installation of temporary facilities.
 c. Clearing.
 d. Demolition
 e. Subcontractor work
 f. Utility Installations
 g. Paving
 h. Start-Up
i. Project closeout

3. Show projected percentage of completion for each item, as of the first day of each month.

4. Show projected dollar cash flow requirements for each month of construction and for each activity as indicated by the approved Schedule of Values.

B. Submittals for construction progress schedules shall be in accordance with Section 01340: Shop Drawings. Indicate on the schedule the following:

1. The dates for Contractor's submittals.
2. The date submittals will be required for Owner-furnished products, if applicable.
3. The date approved submittals will be required from the Engineer.

C. A typewritten list of all long lead items (equipment, materials, etc.).

D. To the extent that the progress schedule or any revised progress schedule shows anything not jointly agreed upon or fails to show anything jointly agreed upon, it shall not be deemed to have been approved by the Engineer. Failure to include any element of work required for the performance of this Contract shall not excuse the Contractor from completing all work required within any applicable completion date, notwithstanding the Engineer's approval of the progress schedule.

E. Scheduling Constraints: The work within Owner's property must be completed within the maximum number of days start to finish, as indicated in the Contract. Additionally, work must proceed on a continuous basis, without stoppages, except for nights and weekends. There shall be no lapses between phases of construction.

1.05 PROGRESS REVISIONS

A. Indicate progress of each activity to date of submission.

B. Show changes occurring since previous submission of schedule:

1. Major changes in scope.
2. Activities modified since previous submission.
3. Revised projections of progress and completion.
4. Other identifiable changes.

C. Provide a narrative report as needed to define:

1. Problem areas, anticipated delays, and the impact on the schedule.
2. Corrective action recommended, and its effect.
3. The effect of changes on schedules of other prime contractors.
D. If the Work falls behind the critical path schedule by two (2) weeks or more, the Contractor shall prepare a recovery schedule.

1.06 SUBMISSIONS

A. Submittal Requirements.

1. Logic network and/or time-phased bar chart, computer generated.
2. Computerized network analysis:
 a. Sort by early start
 b. Sort by float
 c. Sort by predecessor/successor

3. Narrative description of the logic and reasoning of the schedule.

B. Time of Submittals.

Within ten (10) working days after Notice to Proceed, Contractor shall submit a network diagram describing the activities to be accomplished in the project and their dependency relationships, (predecessor/successor) as well as a tabulated schedule as herein defined. The total length of time indicated on the initial CPM schedule shall equal the exact number of days in the Contract Time as defined in Section 00500: Agreement. The schedule produced and submitted shall also indicate calendar dates, including project starting and completion dates, based on the Contract Commencement and completion dates indicated in the Notice to Proceed. The Engineer will complete the review of the complete schedule within fifteen (15) working days after receipt. During the review process, the Engineer may meet with a representative of Contractor to review the proposed plan and schedule to discuss any clarifications that may be necessary.

C. Within ten (10) working days after the conclusion of the Engineer's review period, Contractor shall revise the network diagram as required and resubmit the network diagram and a tabulated schedule produced therefrom. The revised network diagram and tabulated schedule shall be reviewed and accepted or rejected by the Engineer within fifteen (15) working days after receipt. The network diagram and tabulated schedule, when accepted by the Engineer, shall constitute the project work schedule unless a revised schedule is required due to substantial changes in the Work, a change in Contract Time or a recovery schedule is required and requested.

D. Acceptance. The finalized schedule will be acceptable to the Engineer when, in the opinion of the Engineer, it demonstrates an orderly progression of the Work to completion in accordance with the Contract Documents. Such acceptance will neither impose on the Engineer responsibility for the progress or scheduling of the Work nor relieve Contractor from full responsibility therefore. The finalized
schedule of shop drawing submittals will be acceptable to the Engineer when, in the opinion of the Engineer, it demonstrates a workable arrangement for processing the submittals in accordance with the requirements. The finalized Schedule of Values (lump sum price breakdown), as applicable, will be acceptable to the Engineer as to form and content when, in the opinion of the Engineer, it demonstrates a substantial basis for equitably distributing the Contract Price. When the network diagram and tabulated schedule have been accepted, the Contractor shall submit to the Engineer six (6) copies of the time-scaled network diagram, six (6) copies of a computerized tabulated schedule in which the activities have been sequenced by numbers, six (6) copies of a computerized tabulated schedule in which the activities have been sequenced by early starting date, and six (6) copies of a computerized, tabulated schedule in which activities have been sequenced by total float, and six (6) copies sorted by predecessor/successor.

E. Revised Work Schedules. Contractor, if requested by the Engineer, shall provide a revised work schedule if, at any time, the Engineer considers the completion date to be in jeopardy because of "activities behind schedule." The revised work schedule shall include a new diagram and tabulated schedule conforming to the requirements of Paragraph 1.09 herein, designed to show how Contractor intends to accomplish the Work to meet the completion date. The form and method employed by Contractor shall be the same as for the original work schedule. No payment will be made if activities fall more than two (2) weeks behind schedule and a revised work schedule is not furnished.

F. Schedule Revisions. The Engineer may require Contractor to modify any portions of the work schedule that become infeasible because of "activities behind schedule" or for any other valid reason. An activity that cannot be completed by its original latest completion date shall be deemed to be behind schedule. No change may be made to the sequence, duration, or relationships of any activity without approval of the Engineer.

1.07 DISTRIBUTION

A. Distribute copies of the reviewed schedules to:

1. Engineer.
3. Subcontractors.
4. Other concerned parties.
5. Owner (two copies).

B. Instruct recipients to report promptly to the Contractor, in writing, any problems anticipated by the projections shown in the schedules.

1.08 CHANGE ORDERS
A. Upon approval of a change order, the approved changes shall be reflected in the next scheduled revision or update submittal of the construction progress schedule by the Contractor.

1.09 CPM STANDARDS

A. CPM, as required by this Section, shall be interpreted to be generally as outlined in the Associated General Contractors (AGC) publication, The Use of CPM in Construction, A Manual for General Contractors and the Construction Industry, Copyright 1976.

B. Work schedules shall include a graphic network and computerized, tabulated schedules as described below. To be acceptable the schedule must demonstrate the following:

1. A logical succession of work from start to finish.

2. Definition of each activity. Activities shall be identified by major specification section numbers, as applicable, and by major utility.

3. A logical flow of work crews/equipment (crews are to be defined by manpower category and man-hours; equipment by type and hours).

4. Show all work activities and interfaces including submittals as well as major material and equipment deliveries.

C. Networks.

1. The CPM network, or diagram, shall be in the form of a time-scaled diagram of the customary activity-on-type and may be divided into a number of separate pages with suitable notation relating the interface points among the pages. Notation on each activity line shall include a brief work description and duration, as described in Paragraph 1.09, D. herein.

2. All construction activities and procurement shall be indicted in a time-scaled format, and a calendar shall be shown on all sheets along the entire sheet length. Each activity arrow shall be plotted so the beginning and completion dates of said activity can be determined graphically by comparison with the calendar scale. All activities shall be shown using the symbols that clearly distinguish between critical path activities, non-critical path activities, and float for each non-critical activity. All non-critical path activities shall show estimated performances time and float time in scaled form.

D. The duration indicated for each activity shall be in calendar days and shall represent the single best time considering the scope of the work and resources planned for the activity including time for inclement weather. Except for certain non-labor activities,
such as curing concrete or delivering materials, activity durations shall not exceed fourteen (14) days nor be less than one (1) day unless otherwise accepted by the Engineer.

E. Tabulated Schedules. The initial schedule shall include the following minimum data for each activity.

1. Activity Beginning and Ending Numbers (i-j numbers) (single activity numbers may be used).
2. Duration.
3. Activity Description.
4. Early Start Date (Calendar Dated).
5. Late Start Date (Calendar Dated).
6. Early Finish Date (Calendar Dated).
7. Late Finish Date (Calendar Dated).
8. Identified Critical Path.
9. Total Float (Note: No activity may show more than 20 days float).
10. Cost of Activity.
11. Equipment Hours, by type; Man-Power Hours, by crew or trade.

F. Project Information. Each tabulation shall be prefaced with the following summary data:

1. Project Name.
2. Contractor.
3. Type of Tabulation (Initial or Updated).
4. Project Duration.
5. Project Scheduled Completion Date.
6. Effective or Starting Date of the Schedule.
7. New Project Completion Date and Project Status (if an updated or revised schedule).
8. Actual Start Date and Actual Finish Date (for all updated schedules.)

1.10 SCHEDULE MONITORING

A. At not less than monthly intervals or when specifically requested by Engineer, Contractor shall submit to the Engineer a computer printout of an updated schedule for those activities that remain to be completed. Typically, the updated schedule will be submitted with the application for payment as specified below.

B. The updated schedule shall be submitted in the form, sequence, and number of copies requested for the initial schedule.

1.11 PROGRESS MEETINGS
A. For the monthly progress meeting, Contractor shall submit a revised CPM schedule and a three-week look-ahead schedule, showing all activities completed, in progress, uncompleted, or scheduled to be worked during the weeks. The three weeks include the current week plus the next two weeks. All activities shall be from the approved CPM and must be as shown on the CPM unless behind or ahead of schedule. One copy of the revised CPM schedule shall be submitted with each copy of that month's application for payment, six (6) copies minimum.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01340

SHOP DRAWINGS

PART 1 - GENERAL

1.01 REQUIREMENTS INCLUDED

A. The Contractor shall submit to the Engineer and Owner for review and approval, such working drawings, shop drawings, test reports and data on materials and equipment, and material samples materials list, certificates and affidavits as are required for the proper control of work, including but not limited to those working drawings, shop drawings, data and samples for materials and equipment specified elsewhere in the Specifications and in the Contract Drawings.

B. The Contractor shall submit shop drawings prior to pre-construction meeting to the Engineer and the Owner a complete materials list of preliminary data on items for which Shop Drawings are to be submitted. Included in this materials list shall be the names of all proposed manufacturers furnishing specified items. Review of this list by the Engineer shall in no way be expressed or implied relief to the Contractor from submitting complete Shop Drawings and providing material, equipment, etc., fully in accordance with the Specifications. This procedure is required in order to expedite final review of Shop Drawings.

C. The Contractor shall maintain an accurate updated submittal log and will bring this log to each scheduled progress meeting with the Owner and the Engineer. This log shall include the following items:

1. Submittal-Description and Number assigned.
2. Date to Engineer
3. Date returned to Contractor (from Engineer).
4. Status of Submittal (Approved, Approved as Noted, Not Approved/Resubmit).
5. Date of Re submittal and Return (as applicable).
6. Date material release (for fabrication).
7. Projected date of fabrication.
8. Projected date of delivery to site.
10. Specification Section.

11. Drawings Sheet Number.

1.02 CONTRACTOR'S RESPONSIBILITY

A. It is the duty of the Contractor to check all drawings, data and samples prepared by or for him before submitting them to the Engineer for review. Each and every copy of the drawings and data shall bear Contractor's stamp and signature showing that they have been so checked. Shop drawings submitted to the Engineer without the Contractor's stamp and signature will be returned to the Contractor for conformance with this requirement. Shop drawings shall indicate any deviations in the submittal from requirements of the Contract Documents. If the Contractor takes exception to the specifications, the Contractor shall note the exception in the letter of transmittal to the Engineer. Shop drawings submittals shall not be used as a vehicle for requesting approval of substitute or alternative equipment and materials. Substitution requests will be considered only when submitted in accordance with the applicable provisions of Section 01600.

B. Determine and Verify:

1. Field measurements
2. Field construction criteria
3. Catalog numbers and similar data
4. Conformance with Specifications

C. The Contractor shall furnish the Engineer a schedule of Shop Drawings submittals fixing the respective dates for the submission of shop and working drawings, the beginning of manufacture, testing and installation of materials, supplies and equipment. This schedule shall indicate those that are critical to the progress schedule.

D. The Contractor shall not begin any of the work covered by a drawing, data, or a sample returned for correction until a revision or correction thereof has been reviewed and returned to him, by the Engineer, with approval.

E. The Contractor shall submit to the Engineer all drawings and schedules sufficiently in advance of construction requirements to provide no less than thirty (30) calendar days for checking and appropriate action from the time the Engineer receives them.

F. All submittals shall be accompanied by a transmittal letter prepared in duplicate containing the following information:

1. Date
2. Project Title and Number
3. Contractor's name and address
4. The number of each Shop Drawing, Product Data, and Sample submitted
5. Notification of deviations from Contract Documents
6. Submittal Log Number conforming to Specification Section Numbers.

G. The Contractor shall submit five (5) copies of descriptive or product data submittals/drawings to the Engineer. The Engineer will review the submittals/drawings and return to the Contractor the sets of marked-up submittals/drawings with appropriate review comments. All shop drawings, when practical, shall be 24 inch by 36 inch in size.

H. Once submittals/drawings are approved, they are to be distributed as follows:

1. Owner: One (1) copy
2. Engineer: Two (2) copies
3. Contractor: Two (2) copies

I. The Contractor shall be responsible for and bear all costs of damages which may result from the ordering of any material or from proceeding with any part of work prior to the completion of the review by Engineer of the necessary shop drawings.

J. The Contractor shall be fully responsible for observing the need for and making any changes in the arrangement of piping, connections, wiring, manner of installation, etc., which may be required by the materials/equipment he proposed to supply both as pertaining to his own work and any work affected under other parts, headings, or divisions of Drawings and Specifications.

1.03. ENGINEER'S REVIEW OF SHOP DRAWINGS

A. The Engineer's review of drawings, data and samples submitted by the Contractor will cover only general conformity to the Specifications, external connections, and dimensions which affect the installation. The Engineer's review and exceptions, if any, will not constitute an approval of dimensions, quantities, and details of the material, equipment, device, or item shown.

B. The review of drawings and schedules will be general, and shall not be construed:

1. As permitting any departure from the Contract requirements;
2. As relieving the Contractor of responsibility of any errors, including details, dimensions, and materials;
3. As approving departures from details furnished by the Engineer, except as otherwise provided herein.

C. If the drawings or schedules as submitted describe variations and show a
departure from the Contract requirements which Engineer finds to be in the interest of the Owner and to be so minor as not to involve a change in Contract Price or time for performance, the Engineer may return the reviewed drawings, without noting an exception.

D. When reviewed by the Engineer, each of the Shop Drawings will be identified as having received such review, being so stamped and dated. Shop Drawings stamped "NOT APPROVED/RESUBMIT" and with required corrections shown will be returned to the Contractor for correction and re-submittal.

E. Re submittals will be handled in the same manner as first submittals. On Re submittals the Contractor shall direct specific attention, in writing or on resubmitted Shop Drawings, to revisions other than the corrections requested by the Engineer on previous submissions. The Contractor shall make any corrections required by the Engineer.

F. If the Contractor considers any correction indicated on the drawings to constitute a change to the Contract Drawings or Specifications, the Contractor shall give written notice thereof to the Engineer.

G. Shop drawings and submittal data shall be reviewed by the Engineer for each original submittal and first Re submittal; thereafter review time for subsequent Re submittals shall be charged to the Contractor in accordance with the terms of the Engineer's Agreement with the Owner.

H. When the Shop Drawings have been completed to the satisfaction of the Engineer, the Contractor shall carry out the construction in accordance therewith and shall make no further changes therein except upon written instructions from the Engineer.

I. No partial submittals will be reviewed. Submittals not complete will be returned to the Contractor for Re submittal. Unless otherwise specifically permitted by the Engineer, make all submittals in groups containing all associated items for:

 1. Systems
 2. Processes
 3. As indicated in Specifications Sections. All drawings, schematics, manufacturer's product data, certifications and other shop drawing submittals required by a system specification shall be submitted at one time as a package to facilitate interface checking.

1.04 SHOP DRAWINGS

A. When used in the Contract Documents, the term "shop drawings" shall be
considered to mean Contractor's plans for materials and equipment which become an integral part of the Project. These drawings shall be completed and detailed. Shop drawings shall consist of fabrication, erection and setting drawings and schedule drawings, manufacturer's scale drawing, and wiring and control diagrams. Cuts, catalogs, pamphlets, descriptive literature, and performance and test data, shall be considered only as supportive to required shop drawings as defined above. As used herein, the term "manufactured" applied to standard units usually mass-produced; and "fabricate" means items specifically assembled or made out of selected materials to meet individual design requirements.

B. Manufacturer's catalog sheets, brochures, diagrams, illustrations and other standard descriptive data shall be clearly marked to identify pertinent materials, product or models. Delete information which is not applicable to the Work by striking or cross-hatching.

C. Drawings and schedules shall be checked and coordinated with the work of all trades involved, before they are submitted for review by the Engineer and shall bear the Contractor's stamp of approval as evidence of such checking and coordination. Drawings or schedules submitted without this stamp of approval shall be returned to the Contractor for resubmission.

D. Each shop drawing shall have a blank area 3½” by 3½”, located adjacent to the title block. The title block shall display the following:

1. Project title and number
2. Name of project building or structure
3. Number and title of the shop drawing
4. Date of shop drawing or revision
5. Name of Contractor and subcontractor submitting drawing
6. Supplier/manufacturer
7. Separate detailer when pertinent
8. Specification title and number
9. Specification section
10. Drawing number

E. If drawings show variations from Contract requirements because of standard shop practice or for other reasons, the Contractor shall describe such variations in his letter of transmittal. If acceptable, proper adjustment in the Contract shall be implemented where appropriate. If the Contractor fails to describe such variations, he shall not be relieved of the responsibility for executing the work in accordance with the Contract, even though such drawings have been reviewed.

F. Data on materials and equipment include, without limitation, materials and equipment lists, catalog data sheets, cuts, performance curves, diagrams, materials of construction and similar descriptive material. Materials and equipment lists shall give, for each item thereon, the name and location of the supplier or
manufacturer, trade name, catalog reference, size, finish and all other pertinent data.

G. For all mechanical and electrical equipment furnished, the Contractor shall provide a list including the equipment name, address and telephone number of the manufacturer's representative and service company so that service and/or spare parts can be readily obtained.

H. All manufacturers or equipment suppliers who are proposed to furnish equipment or products shall submit an installation list to the Engineer along with the required shop drawings. The installation list shall include at least five (5) installations where identical equipment has been installed and has been in operation for a period of at least one (1) year.

I. Only the Engineer will utilize the color "red" in marking shop drawing submittals.

1.05 WORKING DRAWINGS

A. When used in the Contract Documents, the term "working drawings" shall be considered to mean the Contractor's plan for temporary structures such as temporary bulkheads, support of open cut excavation, support of utilities, ground water control systems, forming and false work; for underpinning; and for such other work as may be required for construction but does not become an integral part of the project.

B. Copies of working drawings as noted in paragraph 1.05 A. above, shall be submitted to the Engineer where required by the Contract Documents or requested by the Engineer, and shall be submitted at least thirty (30) calendar days (unless otherwise specified by the Engineer) in advance of their being required for work.

C. Working drawings shall be signed by a registered Professional Engineer, currently licensed to practice in the State of Florida and shall convey, or be accompanied by, calculation or other sufficient information to completely explain the structure, machine, or system described and its intended manner of use. Review of working drawings by the Engineer will not relieve the Contractor in any way from his responsibility with regard to the fulfillment of the terms of the Contract. All risks of error are assumed by the Contractor; the Owner and Engineer shall have no responsibility therefore.

1.06 SAMPLES

A. The Contractor shall furnish, for the approval of the Engineer, samples required by the Contract Documents or requested by the Engineer. Samples shall be delivered to the Engineer as specified or directed. The Contractor shall prepay all shipping charges on samples. Materials or equipment for which samples are required shall not be used in work until approved by the Engineer.
B. Samples shall be of sufficient size and quantity to clearly illustrate:

1. Functional characteristics of the product, with integrally related parts and attachment devices.
2. Full range of color, texture and pattern
3. A minimum of two samples of each item shall be submitted

C. Each sample shall have a label indicating:

1. Name of project
2. Name of Contractor and subcontractor
3. Material or equipment represented
4. Place of origin
5. Name of producer and brand (if any)
6. Location in project
7. Submittal Number

(Samples of finished materials shall have additional marking that will identify them under the finish schedules).

D. The Contractor shall prepare a transmittal letter in triplicate for each shipment of samples containing the information required in paragraph 1.06 B. above. He shall enclose a copy of this letter with the shipment and send a copy of this letter to the Engineer. Approval of a sample shall be only for the characteristics or use names in such approval and shall not be construed to change or modify any Contract requirements.

E. Approved samples not destroyed in testing shall be sent to the Engineer or stored at the site of work. Approved samples of the hardware in good condition will be marked for identification and may be used in the work. Materials and equipment incorporated in work shall match the approved samples. Samples which failed testing or were not approved will be returned to the Contractor at his expense, if so requested at time of submission.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01370

SCHEDULE OF VALUES

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. Submit to the Engineer a Schedule of Values allocated to the various lump sum portions of the Work, at the Pre-Construction Conference, and as otherwise specified or requested to be submitted earlier as evidence of the Apparent Low Bidder's qualifications.

2. Upon request of the Engineer support the values with data which will substantiate their correctness. The data shall include, but not be limited to quantity of materials, all sub-elements of the activity, and their units of measure.

3. The Schedule of Values shall establish the actual value for each activity of the Work to be completed taken from the approved Critical Path Method (CPM) Construction Schedule, and shall be used as the basis for the Contractor's Applications for Payment.

B. Related Requirements Described Elsewhere:

1.02 FORM AND CONTENT OF SCHEDULE OF VALUES

A. Type schedule on 8-1/2 inch x 11 inch white paper. Contractor's standard forms and computer printouts may be considered for approval by the Engineer upon Contractor's request. Identify schedule with:

1. Title of project and location.

2. Owner and purchase order number.

3. Engineer and project number.

4. Name and address of Contractor.

6. Date of submission.

B. Schedule shall list the installed value of the component parts of the Work in sufficient detail to serve as a basis for computing item prices for progress payments during construction.

C. Identify each line item with the number and the title of the respective section of the Specifications.

D. For each major item of the Work, list sub-values of major products or operations under the major item.

E. For the various portions of the Work:

1. The amount for each item shall reflect a total installed cost including a directly proportional amount of the Contractor’s overhead and profit.

2. For items on which progress payments will be requested for stored materials, break down the value into:

 a. The cost of the materials, delivered and unloaded, with taxes paid. Paid invoices are required for materials. Payment for materials shall be limited to the invoiced amount only.

 b. The total installed value.

F. Round off figures to nearest dollar amount.

G. The sum of the costs of all items listed in the schedule shall equal the total Contract Price.

H. For each item which has an installed value of more than $15,000, provide a breakdown of costs to list major products or operations under each item.

I. 1.03 SUB-SCHEDULE OF UNIT MATERIAL VALUES

A. Submit a separate schedule of unit prices for materials to be stored on site and for those materials incorporated into the Work for which progress payments will be requested.

B. Format shall parallel that shown in Section 00846: Materials Stored On Site Form and Section 00845: Schedule of Values.

C. The unit values for the materials shall be broken down into:
1. Cost of the material, delivered and unloaded at the site, with taxes paid.

2. Copies of paid invoices for component material shall be included with the payment request in which the material first appears.

D. Only materials unique to the project may be billed when stored on site. Materials of standard use such as conduit, wire, small-diameter pipe, steel, etc., shall not be accepted for payment.

E. The installed unit value multiplied by the quantity listed shall equal the cost of that item in the Schedule of Values.

1.04 REVIEW AND RESUBMITTAL

A. After review by Engineer, revise and resubmit Schedule of Values and Schedule of Unit Material Values as required.

B. Resubmit revised schedules in same manner.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01500

TEMPORARY FACILITIES

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: Provide temporary facilities required which shall include but are not necessarily limited to the following:

1. By Contractor:
 a. Telephone.
 b. Storage sheds.
 c. Temporary water service.
 d. Temporary sanitary facilities.
 e. Temporary electrical service.
 f. Contractor's Field office.

2. By Owner:
 a. None.

1.02 TEMPORARY WATER

A. Furnish and install temporary water service for use throughout construction period.

1. Water for construction purposes.

2. Water for other purposes.
 a. Testing.
 b. Temporary sanitary facilities.
 c. Cleaning.
 d. Potable water source (separate).
B. Maintain adequate volume of water for all purposes.

C. Water Source:
 1. Supplier: Local Water Utility
 2. Potable water used shall be separately metered and protected with approved back flow prevention devices.

D. Maintain strict supervision of use of temporary services.
 1. Enforce conformance with applicable codes and standards.
 2. Enforce sanitary practices.
 3. Prevent waste of water.
 4. Prevent abuse of services.

E. Costs of Installation and Operation: Pay costs for water used by all trades, including costs of installation, maintenance, and removal of pipe, meters, and equipment.

F. Requirements of Regulatory Agencies:
 1. Obtain, pay for permits, fees, deposits required by governing authorities.
 2. Comply with federal, state and local codes.

1.03 TEMPORARY ELECTRICITY

A. Furnish and install temporary electric power service for construction needs throughout construction period.
 1. Power centers for miscellaneous tools and equipment used in construction work.
 a. Locate so that power is available at any desired point with no more than 100 feet extension.
 b. Provide weatherproof distribution box with minimum of four (4), 20 amp, 120 volt grounded outlets with GFCI protection.
c. Provide circuit breaker protection for each outlet.

d. Provide equipment grounding continuity for entire system.

e. Users shall provide grounded, Underwriters Laboratories, Inc. (UL) approved extension cords from power center to point of operations.

2. Power for construction equipment.

3. Power for testing and checking equipment.

4. Power for welding units and for other equipment having special power requirements.

5. Power for Contractors, Subcontractors and Owner/Engineer's field offices.

B. Capacity:

1. Adequate electrical service for construction use by all trades during construction period.

2. Notify Power Company if unusually heavy loads such as welding, and other special power requirements, will be connected.

 a. Provide special circuits for heavy load requirements.

 b. Do not overload any circuit.

C. Power Source:

1. Supplier: Utilities Commission City of New Smyrna Beach

2. Provide minimum 240 volt, single phase, 60 hertz power service to project site.

D. Maintain strict supervision of use of temporary services:

1. Enforce conformance with applicable standards.

2. Enforce safe practices.

3. Prevent abuse of services.
E. Costs of Installation and Operation: Pay costs of temporary electrical power used, including costs of installation, meter, maintenance, and removal of temporary services from point of connection.

F. Requirements of Regulatory Agencies:
 1. Obtain and pay for permits as required by governing authorities.
 2. Comply with applicable codes.
 d. Federal, state and local codes and utility company regulations.

1.04 TEMPORARY SANITARY FACILITIES

A. Furnish and install temporary sanitary facilities for use throughout construction period.
 1. Potable water for construction personnel:
 a. Portable containers to dispense drinking water.
 b. Maintain temperature between 45 degrees Fahrenheit (EF) (7.5 degrees C) and 55 EF (13 degrees C).
 2. Enclosed toilet facilities for construction personnel.
 3. General employee washing facilities.
 4. Existing wash down facilities at the plant shall not be used.

B. Minimum number of fixtures:
 1. Toilets and Urinals
 a. For less than 20 employees: One (1) toilet.
 b. For 20 or more employees: One (1) toilet and 1 urinal per 40 workers.
2. Washing Facilities: Adequate for number of employees, for type of work requiring washing facilities.

C. Maintain strict supervision of use of facilities:
 1. Enforce conformance with applicable standards.
 2. Maintain, service and clean facilities.
 3. Enforce proper use of sanitary facilities.

D. Cost of Installation and Operation:
 1. Pay costs of temporary sanitary facilities, including costs of installation, maintenance and removal.
 2. Costs of Water: As specified in Paragraph 1.02C.2., herein.
 3. Pay service charges for use of portable sanitary units.

E. Facility Locations:
 1. Within the project site.
 2. Drinking Water: Convenient to work stations.
 3. Toilet and washing facilities.
 a. Secluded from public observation.
 b. Convenient for use of personnel in relation to work stations.
 4. Obtain acceptance of Engineer and Owner.

F. Enclosure for Toilet Facilities:
 1. Weatherproof, sight proof, sturdy temporary enclosures.
 2. Insect-proof screening, adequate natural ventilation.
G. Requirements of Regulatory Agencies:

1. Obtain and pay for permits as required by governing authorities.

2. Comply with federal, state, and local codes.

PART 2 - PRODUCTS

2.01 MATERIALS

A. General:

1. Materials may be new or used, but must be adequate for purpose required, sanitary and must not violate requirements of applicable codes.

2. At Contractor's option, patented specialty products may be used, in compliance with applicable codes.

2.02 ELECTRICITY (See Section 1.03)

A. Comply with Division 16: Electrical.

B. Provide required facilities, including transformers, conductors, poles, conduits, raceways, breakers, fuses and switches.

C. Provide appropriate enclosures for environment in which used, in compliance with NEMA standards.

2.03 TEMPORARY SANITARY FACILITIES (See Section 1.04)

A. Drinking Water Facilities (Portable Containers):

1. Tightly closed, and equipped with dispensing tap.

2. Clearly label contents.

3. Do not use for other purposes.

4. Provide single-service disposable cups, with sanitary container for unused cups, and waste receptacles for used cups.
B. Toilet Facilities

1. Portable Toilets; either:
 a. Chemical toilets.
 b. Recirculating toilets.
 c. Combustion toilets.

2. Toilet Tissue: Provide at each toilet, on suitable dispenser.

2.04 CONTRACTOR’S FIELD OFFICE AND FACILITIES

A. Specific Requirements:

1. Provide either a separate building or a trailer of adequate floor space for Contractor’s use.

2. The trailer shall be weather-tight, have a tight level floor at least 8 inches off the ground, and shall be insulated, have suitable screened ventilation and a solid door.

3. The office shall be provided with, heating equipment, water, electrical wiring, outlets, and fixtures suitable to light the tables and desk adequately. Toilet facilities are to be included with a holding tank to be pumped clean daily by the Contractor. Garbage shall be collected daily and clean-up of the trailer shall be provided three (3) times per week.

4. Lighting and Temperature Control: Window air conditioning unit capable of maintaining the trailer at 70 to 80°F, but a minimum of 12,000 BTU (1 ton) rating.

B. Furniture and Equipment: The office shall have the following furniture and equipment:

1. Telephone: One (1) direct line instrument.

2. Racks and file for Project Record Documents.

3. Facsimile machine on a dedicated line.

4. Other furniture and furnishings: Contractor’s option.
C. Within ten (10) days after Notice to Proceed, submit a sketch showing proposed number and locations; including storage sheds and trailers. The Contractor shall locate all temporary construction offices and storage trailers where approved by the Owner and the Engineer.

2.05 TEMPORARY PARKING

A. Provide a location, approved by the Engineer, for gravel or other suitable surface for Contractor's employee, Owner/Engineer representatives and visitor parking. Personal vehicles will be restricted from the work area.

B. Provide gravel parking space at the Contractor's trailer for a minimum of eight (8) vehicles. Provide gravel parking space at the Owner/Engineer's field office for a minimum of four (4) vehicles.

2.06 SECURITY LIGHTING

A. Provide for adequate pole mounted flood lights for parking area at the Contractor and Owner/Engineer's trailer areas. Maintain lighting on a photocell or timer.

PART 3 - EXECUTION

3.01 GENERAL

A. Install work in a neat and orderly manner.

B. Make structurally sound throughout.

C. Maintain to provide continuous service.

D. Modify and extend service as work progress requires.

3.02 TEMPORARY WATER

A. Locate piping and outlets.

1. Provide service convenient to work stations.

2. Avoid interference with:

 a. Traffic and work areas.
b. Materials handling equipment.

c. Storage areas.

B. Do not run piping on floor or on ground.

C. When necessary to maintain pressure, provide temporary pumps, tanks, and compressors.

3.03 TEMPORARY ELECTRICITY

A. Service and distribution may be overhead or underground.

B. Locate to avoid interference with:
 1. Traffic and work areas.
 2. Cranes.
 3. Material handling equipment.
 4. Storage areas.

C. Do not run branch circuits on floor or on ground.

D. Wire all safety devices specified for final operation of equipment.

E. Check operation of safety devices.

3.04 TEMPORARY SANITARY FACILITIES

A. Portable Toilets:
 1. Erect securely, and anchor to prevent dislocation or tipping over.
 2. Service as often as necessary to prevent accumulation of wastes, and creation of unsanitary conditions.
 3. Use only unless sewer and water service can be provided to site.

B. Washing Facilities: Provide faucets, drains and other washing facilities suitable for the type of work requiring washing.
3.05 REMOVAL

A. Completely remove temporary materials and equipment upon completion of construction.

B. Clean, and repair damage caused by installation and restore to specified, or original condition.

END OF SECTION
SECTION 01505
MOBILIZATION

PART I - GENERAL

1.01 DEFINITION AND SCOPE

A. Mobilization shall include the obtaining of all permits, insurance, and bonds; moving onto the site of all plant and equipment; furnishing and erecting plants, temporary buildings, and other construction facilities; all as required for the proper performance and completion of the Work. Mobilization shall include, but not be limited to, the following principal items.

1. Move onto the site all Contractors’ plant and equipment required for first month operations.

2. Install temporary construction power, wiring, and lighting facilities.

3. Establish fire protection plan and safety program.

4. Secure construction water supply.

5. Provide field office trailers for Contractor and as may be specified for Owner and Engineer.

6. Provide on-site sanitary facilities and potable water facilities as specified.

7. Arrange for and erect Contractor's work and storage yard and employee's parking facilities.

8. Submit all required insurance certificates and bonds.

9. Obtain all required permits.

10. Post all OSHA, EPA, Department of Labor, and all other required notices.

11. Have Contractor's superintendent at the job site full time.

12. Submit a detailed construction CPM schedule acceptable to the Engineer as specified.

13. Submit a schedule of values of the Work.
14. Submit a schedule of submittals.

1.02 DEMOBILIZATION

A. Demobilization is the timely and proper removal of all contractor owned material, equipment or plant, from the job site and the proper restoration or completion of work necessary to bring the site into full compliance with the contract documents.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 01525
CONSTRUCTION AIDS

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: Furnish, install and maintain required construction aids, remove on completion of Work.

B. Related Requirements Described Elsewhere:

1. Summary of Project: Section 01010.

C. Comply with applicable requirements specified in Sections of Division 2 through 16.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Materials may be new or used, suitable for the intended purpose, but must not violate requirements of applicable codes and standards.

2.02 CONSTRUCTION AIDS

A. Provide construction aids and equipment required by personnel and to facilitate execution of the Work: scaffolds, staging, ladders, stairs, ramps, runways, platforms, railings, hoists, cranes, chutes and other such facilities and equipment such as temporary valves and fittings. Refer to respective Sections for particular requirements for each trade.

B. When permanent stair framing is in place, provide temporary treads, platforms and railings, for use by construction personnel.

C. Maintain facilities and equipment in first-class condition.
PART 3 - EXECUTION

3.01 PREPARATION

A. Consult with the Engineer, review site conditions and factors which affect construction procedures and construction aids, which may be affected by execution of the Work.

3.02 GENERAL

A. Comply with applicable requirements specified in sections of Division 2 through 16.

B. Relocate construction aids as required by progress of construction, by storage of work requirements of Owner and other contractors employed at the site.

3.03 REMOVAL

A. Completely remove temporary materials, equipment and services:

1. When construction needs can be met by use of permanent construction.

2. At completion of work.

B. Clean and restore areas damaged by installation by use of temporary facilities.

1. Remove foundations and underground installations for construction aids.

2. Grade and grass areas of site affected by temporary installations to required elevations, slopes, ground cover and clean the area.

C. Restore permanent facilities used for temporary purposes to specified condition or in kind if not specified.

END OF SECTION
SECTION 01600
MATERIAL AND EQUIPMENT

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. Conform to applicable specifications and standards.

2. Comply with size, make, type and quality specified, or as specifically approved in writing by Engineer.

3. Manufactured and fabricated products:

 a. Design, fabricate and assemble in accordance with the best engineering and shop practices.

 b. Manufacture like parts of duplicate units to standard sizes and gauges, to be interchangeable.

 c. Two or more items of the same kind shall be identical, by the same manufacturer.

 d. Products shall be suitable for service conditions.

 e. Equipment capacities, sizes and dimensions shown or specified shall be adhered to unless variations are specifically approved in writing.

4. Do not use material or equipment for any purpose other than that for which it is designed or is specified.

1.02 APPROVAL OF MATERIALS

A. Only new materials and equipment shall be incorporated in the work. All materials and equipment furnished by Contractor shall be subject to the inspection and approval of Engineer. No material shall be delivered to the work without prior approval of Engineer.

B. Prior to the pre-construction meeting, the Contractor shall submit all shop drawings to the Engineer and Owner, along with all applicable data relating to materials and equipment proposed to furnish the work. Such data shall be in sufficient detail to enable Engineer to identify the particular product to form an opinion as to its conformity to the specifications.
C. Facilities and labor for handling and inspection of all materials and equipment shall be furnished by Contractor. If Engineer requires, either prior to beginning or during progress of the work, Contractor shall submit samples of materials for such special tests as may be necessary to demonstrate that they conform to the specifications. Such samples shall be furnished, stored, packed and shipped as directed at Contractor's expense. Except as otherwise noted, Contractor shall make arrangements for and pay for the tests.

D. Contractor shall submit data and samples sufficiently early to permit consideration and approval before materials are necessary for incorporation in the work. Any delay of approval resulting from Contractor's failure to submit samples or data promptly shall not be used as a basis of claim against Owner or Engineer.

E. In order to demonstrate the proficiency of workers or to facilitate the choice among several textures, types, finishes and surfaces, Contractor shall provide such samples of workmanship or finish as may be required.

F. The materials and equipment used on the work shall correspond to the approved samples or other data.

1.03 SUBSTITUTIONS AND PRODUCT OPTIONS

A. The substitution requirements of this Section are in addition to the requirements of the General Conditions and Supplementary Conditions.

B. The intent of these Specifications is to provide Owner with a quality facility without discouraging competitive bidding. Substitutions may be submitted and will be evaluated as specified herein.

C. A Request for Substitution of Product may be submitted after the Contractor:

1. Has investigated the proposed product and determined that it is equal to or superior to specified product, furnishes a certification to that effect and waives all rights to additional payment or time that may subsequently become necessary due to the failure of the substituted product to perform adequately.

2. Agrees to provide same warranties or bonds for product substitution as for product specified.

3. Agrees to be responsible for coordinating and paying for any necessary changes to other work required by approved substitutions or product options which he selects and shall pay all such costs including the costs of the services of the design professional to revise the Contract Documents, if such revisions are required.

4. Waives all claims for additional costs due to substitution which may subsequently become apparent.
5. Is offering either a substantial credit to the Owner for acceptance of the substitution or a convincing justification that the product to be provided as the substitution is substantially superior in quality, performance, compatibility with adjacent products, durability, vandal-resistance or in other important ways.

D. Engineer's Action:

1. Engineer will consider written requests for product substitution for a period of 45 calendar days after the effective date of the Agreement. Engineer will review requests for substitutions with reasonable promptness and notify Contractor in writing of Owner's decision to accept or reject requested substitutions. Only the Owner may accept a substitution.

2. Substitution requests made by means of shop drawings or product data submittal will not be considered.

3. After the period of 45 days has elapsed, the only substitution requests which will be considered are those which are made necessary by the removal of the specified products from the market or by other similar, unavoidable circumstances beyond the control of the Contractor.

1.04 MANUFACTURER'S INSTRUCTIONS FOR INSTALLATION

A. When Contract Documents require that installation of work shall comply with manufacturer's printed instructions, obtain and distribute copies of such instructions to parties involved in the installation, including five copies to Engineer.

1. Maintain one set of complete instructions at the job site during installation and until completion.

B. Handle, install, correct, clean, condition and adjust products in strict accord with such instructions and in conformity with specified requirements.

1. Should job conditions or specified requirements conflict with manufacturer's instructions, consult with Engineer for further instructions.

2. Do not proceed with work without clear instructions.

C. Perform work in accordance with manufacturer's instructions. Do not omit any preparatory step or installation procedure unless specifically modified or exempted by Contract Documents.

1.05 TRANSPORTATION AND HANDLING

A. Arrange deliveries of products in accordance with construction schedules, coordinate to avoid conflict with work and conditions at the site.
1. Deliver products in undamaged condition, in manufacturer's original containers or packaging, with identifying labels intact and legible.

2. Immediately on delivery, inspect shipments to assure compliance with requirements of Contract Documents and approved submittals, and that products are properly protected and undamaged.

B. Provide equipment and personnel to handle products by methods to prevent soiling or damage to products or packaging.

1.06 STORAGE AND PROTECTION

A. The Contractor shall furnish a covered, weather-protected storage structure providing a clean, dry, noncorrosive environment for all mechanical equipment, valves, architectural items, electrical and instrumentation equipment, and special equipment to be incorporated into this project. Storage of equipment shall be in strict accordance with the "instructions for storage" of each equipment supplier and manufacturer including connection of heaters, placing of storage lubricants in equipment, etc. Corroded, damaged or deteriorated equipment and parts shall be replaced before acceptance of the project. Equipment and materials not properly stored will not be included in a payment estimate.

B. Store products in accordance with manufacturer's instructions, with seals and labels intact and legible.

1. Store products subject to damage by the elements in weathertight enclosures such as buildings or trailers which have a concrete or wooden floor, a roof and fully closed walls on all sides.

2. Maintain temperature and humidity within the ranges required by manufacturer's instructions (i.e. electrical and instrumentation equipment).

3. Protect mechanical and electrical equipment from being contaminated by dust, dirt and moisture.

4. Store fabricated products above the ground, on blocking or skids prevent soiling and staining. Cover products which are subject to deterioration with impervious sheet coverings, provided adequate ventilation to avoid condensation.

5. Provide heated storage space for material which would be damaged by freezing.

6. Store loose granular materials in a well-drained area on solid surfaces to prevent mixing with foreign matter.
7. Prior to the installation or equipment it shall be stored at locations designated and approved by the Engineer.

C. All materials and equipment to be incorporated in the work shall be handled and stored by Contractor before, during and after shipment in a manner to prevent warping, twisting, bending, breaking, chipping, rusting, and any injury, theft or damage of any kind whatsoever to the material or equipment.

D. Cement, sand and lime shall be stored under a roof and off the ground and shall be kept completely dry at all times. All structural and miscellaneous steel, and reinforcing steel shall be stored off the ground or otherwise to prevent accumulations of dirt or grease, and in a position to prevent accumulations of standing water and to minimize rusting. Beams shall be stored with the webs vertical. Precast concrete beams shall be handled and stored in a manner to prevent accumulations of dirt, staining, chipping or cracking. Brick, block and similar masonry products shall be handled and stored in a manner to reduce breakage, chipping, cracking and spalling to a minimum.

E. All materials which, in the opinion of Engineer, have become so damaged as to be unfit for the use intended or specified shall be promptly removed from the site of the work, and Contractor shall receive no compensation for the damaged material or its removal.

F. Arrange storage in a manner to provide easy access for inspection. Make periodic inspections of stored materials and equipment to assure that products are maintained under specified conditions, and free from damage or deterioration.

G. Protection After Installation: Provide substantial coverings as necessary to protect installed products from damage from traffic and subsequent construction operations. Remove covering when no longer needed.

H. The Contractor shall be responsible for all material, equipment, and supplies delivered to Owner under this Contract until final inspection of the work and acceptance thereof by Owner. In the event any such material, equipment and supplies are lost, stolen, damaged or destroyed prior to final inspection and acceptance, Contractor shall replace same without additional cost to Owner.

I. Should Contractor fail to take proper action on storage and handling of equipment supplied under the Contract within seven days after written notice to do so has been given, Owner retains the right to correct all deficiencies noted in previously transmitted written notice and deduct the cost associated with these corrections from Contractor's Contract. These costs may be comprised of expenditures for labor, equipment usage, administrative, clerical, engineering and any other costs associated with making the necessary corrections.
A. Manufacturers of equipment and machinery shall furnish any special tools (including grease guns or other lubricating devices) required for normal adjustment, operations and maintenance, together with instructions for their use. Contractor shall preserve and deliver to Owner these tools and instructions in good order no later than upon completion of the Contract.

1.08 STORAGE AND HANDLING OF EQUIPMENT ON SITE.

A. Attention shall be given to the storage and handling of equipment on site. As a minimum, the procedure outlined below shall be followed:

1. Equipment shall not be shipped until approved by Engineer. The intent of this requirement is to reduce on-site storage time prior to installation and/or operation. Under no circumstances shall equipment be delivered to the site more than one month prior to installation without written authorization from Engineer. Equipment shipped to the site shall be stored in accordance with Paragraph 1.06, herein. Operation and maintenance data shall be submitted to Engineer for review prior to shipment of equipment.

2. All equipment having moving parts such as gears, electric motors, etc. and/or instruments shall be stored in a temperature and humidity controlled building approved by Engineer, until such time as the equipment is to be installed.

3. All equipment shall be stored fully lubricated with oil, grease, etc. unless otherwise instructed by the manufacturer.

4. Manufacturer's storage instructions shall be carefully studied by Contractor and reviewed with Engineer by him. These instructions shall be carefully followed and a written record of this kept by the Contractor.

5. Moving parts shall be rotated a minimum of once weekly to insure proper lubrication and to avoid metal-to-metal "welding". Upon installation of the equipment, Contractor shall start the equipment, at least half load, once weekly for an adequate period of time to insure that the equipment does not deteriorate from lack of use.

6. Lubricants shall be changed upon completion of installation and as frequently as required thereafter during the period between installation and acceptance. Mechanical equipment to be used in the work, if stored for longer than ninety (90) days, shall have the bearings cleaned, flushed and lubricated prior to testing and startup, at no extra cost to Owner.

7. Prior to acceptance to the equipment, Contractor shall have the manufacturer inspect the equipment and certify that its condition has not been detrimentally affected by the long storage period. Such certifications by the manufacturer shall be deemed to mean that the equipment is judged by the manufacturer to be in a condition equal to that of equipment that has been shipped, installed,
tested and accepted in a minimum time period. As such, the manufacturer will guarantee the equipment equally in both instances. If such a certification is not given, the equipment shall be judged to be defective. It shall be removed and replaced at Contractor's expense.

1.09 WARRANTY

A. For all major pieces of equipment, the one (1) year warranty shall begin when the new I&C system and the renovated operations building has been installed and successfully completed a startup per Section 01650.

1.10 SPARE PARTS

A. Spare parts for certain equipment have been specified in the pertinent sections of the Specifications. Contractor shall collect and store all spare parts so required in an area to be designated by Engineer. In addition, Contractor shall furnish Engineer an inventory listing all spare parts, the equipment they are associated with, the name and address of the supplier, and the delivered cost of each items. Spare parts shall be turned over in conjunction with the "Spare Parts List" as shown. Copies of actual invoices for each item shall be furnished with the inventory to substantiate the delivered cost.

END OF SECTION
SECTION 01650

START-UP

PART 1 - GENERAL

1.01 DESCRIPTION

A. The Work may be segmented into several phases of construction in a logical order to meet the project schedule. Portions of the Work may be utilized prior to Substantial Completion of all the Work. Also, certain items of equipment are to be temporarily utilized in a phased segment of the Work and then relocated in a subsequent phase in a permanent installation.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

2.01 PRELIMINARY MATTERS

A. Start-up Certification: Prior to start-up, successfully complete all testing required of the individual components of work in the presence of the Engineer or is representative.

B. Demonstrate to the Engineer that all components are operating under their own controls as designated.

C. Coordinate start-up activities with equipment suppliers, subcontractors, and the Owner's operating personnel at the site and with the Engineer prior to commencing system start-up. All coordination is the responsibility of the Contractor.

2.02 START-UP

A. Confirm that all equipment is properly installed and that the I&C system is online and operating as intended

B. Make adjustments as necessary.

2.03 START-UP DEMONSTRATION AND TESTING

A. After all Work components have been constructed, field tested and started up in accordance with the individual specifications, perform the Start-Up Demonstration and Testing in the presence of the Engineer and the Owner. The demonstration shall be held upon completion of all systems at a date to be agreed upon in writing with the Owner.
B. Acceptability of the Work's performance will be based on the Work performing as specified, under these actual and simulated operating conditions as defined in the Contract Documents. The intent of the start-up demonstration and testing is for the Contractor to demonstrate to the Owner and the Engineer the Work will function as a complete and operable system under normal operating conditions and is ready for acceptance.

C. Certificate of Completed Demonstration: Submit five (5) copies of Demonstration Certification memo signed by the Contractor, Subcontractor and Owner and insert one copy in each Operation and Maintenance Manual.

EQUIPMENT TRAINING & STARTUP CHECKLIST

PROJECT: ________________________________
OWNER: __________________________________
ENGINEER: ______________________________
CONTRACTOR: ____________________________
DATE: ____________________________________
STRUCTURE: ______________________________
EQUIPMENT DESCRIPTION: __________________

VENDOR: _________________________________

REPRESENTATIVE: _________________________ INIT.: _______________________

of training days required: __________ # received:

STARTUP/TRAINING DESCRIPTION:
COMMENTS:

ACCEPTABLE: __ PARTIALLY ACCEPTABLE: __ NON-ACCEPTABLE: __

ATTENDEES:

<table>
<thead>
<tr>
<th>NAME</th>
<th>AFFILIATION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION
SECTION 01700

CONTRACT CLOSEOUT

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: Comply with requirement stated in Conditions of the Contract and in Specifications for administrative procedures in closing out the Work.

B. Related Requirements Described Elsewhere:

1. Start-Up: Section 01650
2. Cleaning: Section 01710.
3. Project Record Documents: Section 01720.
4. Operating and Maintenance Data: Section 01730.
5. Warranties and Bonds: Section 01740.

1.02 SUBSTANTIAL COMPLETION

A. The Work will not be substantially complete, and Contractor may not request substantial completion inspection unless the following submittals and work is completed:

1. All Operation and Maintenance manuals have been submitted and approved to the requirements of Section 01730.

2. All equipment has been checked-out by the equipment manufacturer and Certificates of Manufacturer's Check-Out has been submitted as required by Section 01650.

3. All start-up and demonstration testing completed and Certificates of Completed Demonstration submitted to the requirements of Section 01650.

4. Project Record Documents are complete and have been submitted and reviewed to the requirements of Section 01720.

5. All training of Owner's personnel completed.

6. All areas to be used and occupied are safe, operable in automatic and complete.
7. All building occupancy certificates have been issued by the appropriate building permitting agency.

8. All painting, finishes, fencing, cleanup, final grading, grassing, planting, sidewalk construction, and paving shall have been completed and ready for inspection.

9. All deficiencies noted on inspection reports or nonconformances are corrected or the correction plan approved.

B. When the conditions of paragraph 1.02 A. are met the Contractor shall submit to the Engineer:

1. A written notice that he considers the Work, or portion thereof, is substantially complete, and requests an inspection.

2. A punchlist of items to be corrected. (Uncompleted work which is not related to the safe, effective, efficient use of the Project may be allowed on the punchlist with the Engineer's approval.)

C. Within a reasonable time after receipt of such notice, the Engineer will make an inspection to determine the status of completion.

D. Should the Engineer determine that the Work is not substantially complete:

1. The Engineer will promptly notify the Contractor in writing, giving the reasons therefore.

2. Contractor shall remedy the deficiencies in the Work and send another written notice of substantial completion to the Engineer.

3. The Engineer will within reasonable time, reinspect the Work. The Contractor will be liable for reinspection fees as described in paragraph 1.04, herein.

E. When the Engineer finds that the Work is substantially complete, he will:

1. Schedule a walk-through of the facility to include the Owner. Engineer shall determine the completeness of the punchlist and readiness of the facility for occupancy by the Owner.

2. Prepare and deliver to Owner a tentative Certificate of Substantial Completion with the tentative punchlist of items to be completed or corrected before final inspection.

3. After consideration of any objections made by the Owner as provided in Conditions of the Contract, and when the Engineer considers the Work substantially complete, he will execute and deliver to the Owner and the
Contractor a definite Certificate of Substantial Completion with a revised tentative list of items to be completed or corrected. Any incomplete work allowed on a punchlist must be reinspected upon completion and any deficiencies found will be added to the punchlist.

1.03 FINAL INSPECTION

A. Prior to Contractor's request for a final inspection the following submittals and work must be complete:

1. Project Record Documents must be approved.

2. All spare parts and maintenance materials must be suitably delivered to the Owner per the requirements of the Technical Sections of the Specifications.

3. Contractor to submit evidence of compliance with requirements of governing authorities.

B. After satisfying the requirements of paragraph 1.03 A. and when Contractor considers the Work complete, he shall submit written certification that:

1. Contract Document requirements have been met.

2. Work has been inspected for compliance with Contract Documents.

3. Work has been completed in accordance with Contract Documents.

4. Equipment and systems have been tested in the presence of the Owner's representative and are operational.

5. All punchlist items have been corrected or completed and the Work is ready for final inspection.

C. The Engineer will, within reasonable time, make an inspection to verify the status of completion with reasonable promptness after receipt of such certification.

D. Should the Engineer consider that the Work is incomplete or defective:

1. The Engineer will promptly notify the Contractor in writing, listing the incomplete or defective work.

2. Contractor shall take immediate steps to remedy the stated deficiencies, and send another written certification to the Engineer that the Work is complete.

3. The Engineer will, within a reasonable amount of time, reinspect the Work and the Contractor shall be liable for reinspection fees as described in paragraph 1.04, herein.
D. When the Engineer finds that the Work is acceptable under the Contract Documents, the Contractor may make closeout submittals.

1.04 REINSPECTION FEES

A. Should the Engineer perform reinspections due to failure of the Work to comply with the claims of status of completion made by the Contractor:

1. Contractor will compensate the Owner for such additional services.

2. Owner will deduct the amount of such compensation from the final payment to the Contractor.

1.05 CONTRACTOR'S CLOSEOUT SUBMITTALS

A. Warranties and Bonds: To requirements of Section 01740.

B. Evidence of Payment and Release of Liens: To requirements of General and Supplementary Conditions.

C. Certificate of Insurance for Products and Completed Operations.

1.06 FINAL ADJUSTMENT OF ACCOUNTS

A. Submit a final statement of accounting to the Engineer.

B. Statement shall reflect all adjustments to the Contract Sum:

1. The original Contract Sum.

2. Additions and deductions resulting from:

 a. Previous change orders or written amendment.

 b. Allowances.

 c. Unit prices.

 d. Deductions for uncorrected work.
e. Penalties and bonuses.

f. Deductions for liquidated damages.

g. Deductions for reinspection payments.

h. Other adjustments.

3. Total Contract Sum, as adjusted.

4. Previous payments.

5. Sum remaining due.

C. Engineer will prepare a final Change Order, reflecting approved adjustments to the Contract Sum which were not previously made by Change Orders.

1.07 FINAL APPLICATION FOR PAYMENT

A. Contractor shall submit the final Application for Payment in accordance with procedures and requirements stated in the Conditions of the Contract.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01710
CLEANING

PART I - GENERAL

1.01 DESCRIPTION

A. Scope of Work: Execute cleaning, during the progress of Work and at completion of the Work.

1.02 DISPOSAL REQUIREMENTS

A. Conduct cleaning and disposal operations to comply with codes, ordinances, regulations and anti-pollution laws.

PART II - PRODUCTS

2.01 MATERIALS

A. Use only those cleaning materials which will not create hazards to health or property and which will not damage surfaces.

B. Use only those cleaning materials and methods recommended by manufacturer of the surface material to be cleaned.

C. Use cleaning materials only on surfaces recommended by cleaning material manufacturer.

PART III - EXECUTION

3.01 DURING CONSTRUCTION

A. Execute daily cleaning to keep the Work, the site and adjacent properties free from accumulations of waste materials, rubbish and windblown debris, resulting from construction operations or personal activities.

B. Provide on-site containers for the collection of waste materials, debris and rubbish.

C. Remove waste materials, debris and rubbish from the site periodically, or as directed by the Owner and dispose of at legal disposal areas away from the site.

3.02 DUST CONTROL
A. The Contractor shall employ construction techniques that minimize the production and distribution of dust.

B. Clean interior spaces prior to the start of finish painting and continue cleaning on an as-needed basis until painting is finished.

C. Schedule operations so that dust and other contaminants resulting from cleaning process will not fall on wet or newly-coated surfaces.

3.03 FINAL CLEANING

A. Employee skilled workman for final cleaning.

B. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from sight-exposed interior and exterior surfaces.

C. Prior to final completion, or Owner occupancy, Contractor shall conduct an inspection of sight-exposed interior and exterior surfaces and all work areas, to verify that the entire Work site is clean.

END OF SECTION
SECTION 01720
PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.01 REQUIREMENTS INCLUDED

A. Maintain at the site for the Owner one record copy of:
 1. Drawings
 2. Specifications
 3. Addenda
 4. Change Orders and other modifications of the contract
 5. Engineer's Field Orders or written instructions
 6. Approved Shop Drawings
 7. Field Test records
 8. Construction photographs, preconstruction videos, and pipeline videos.
 9. Preliminary as-built drawings

1.02 MAINTENANCE OF DOCUMENTS AND SAMPLES

A. Store documents and samples in Contractor's field office apart from documents used for construction.
 1. Provide files and racks for storage of documents.
 2. Provide locked cabinet or secure storage space for storage of samples.

B. File documents and samples in accordance with CSI format with section numbers as provided herein.

C. Maintain documents in a clean, dry, legible, condition and in good order. Do not use record documents for construction purposes.

D. Make documents and samples available at all times for inspection by the Engineer.
E. As a prerequisite for monthly progress payments, the Contractor shall provide the currently updated "Record Documents" for review by the Engineer and Owner.

1.03 MARKING DEVICES

A. Provide felt tip marking pens for recording information in the color code designated by the Engineer.

1.04 RECORDING

A. Label each document. "PROJECT RECORD" in neat large printed letters.

B. Record information concurrently with construction progress. Do not conceal any work until required information is recorded.

C. Drawings: Legibly mark to record actual construction:

1. Depths of various elements of foundation in relation to finish first floor datum.

2. All underground piping with elevations and dimensions. Change to piping location. Horizontal and vertical locations of underground utilities and appurtenances, referenced to permanent surface improvements. Actual installed pipe materials, class, etc.

3. Location of internal utilities and appurtenances concealed in the construction, referenced to visible and accessible features of the structure.

4. Field changes of dimensional and detail.

5. Changes made by Field Order or by Change Order.

6. Details not on original contract drawings.

7. Equipment and piping relocations.

8. Major architectural and structural changes including relocation of doors, windows, etc.

9. Architectural schedule changes according to Contractor's records or shop drawings.

 a. Contractor shall provide copies of all such recordings to the Contractor's surveyor for incorporation into the preliminary and final as-builts drawings.
D. Specifications and Addenda: Legibly mark each section to record:

1. Manufacturer, trade name, catalog number and supplier of each product and item of equipment actually installed.

2. Changes made by Field Order or by Change Order.

E. Shop Drawings (after final review and approval): Provide four (4) sets of record drawings for each process equipment, piping, electrical system and instrumentation system.

1.05 SUBMITTAL

A. Accompany each submittal with transmittal letter in duplicate, containing:

1. Date

2. Project title and number

3. Contractor's name and address

4. Title and number of each Record Document

5. Signature of Contractor of his authorized representative

B. Preliminary As-built Drawings: The Contractor shall submit to the Engineer two (2) paper copies of preliminary as-built drawings prepared and signed/sealed by the Contractor’s surveyor with each monthly progress payment request. Preliminary as-built drawings shall conform to the requirements of final as-built drawings and shall represent the completed work to date. Preliminary as-built drawings shall include all work which the Contractor is requesting to be paid for.

C. Final As-built Drawings: Upon project closeout and as a prerequisite to the final pay request, the Contractor shall submit to the Engineer final as-built drawings Administrative Code, pursuant to Section 472.027 of the Florida Statutes. The Engineer shall supply the Contractor copies of AutoCad files and/or mylar sepias of the original construction plans for the Contractor’s use in the as-built drawing preparation. Final as-built drawings shall include all work which the Contractor is requesting to be paid for. The final as-built drawing submittal shall include:

1. Five (5) sets of signed and sealed blue-line prints submitted to the Engineer.

2. One (1) set of signed and sealed blue-line prints submitted to the Owner.

2. AutoCad drawing files shall include as-built information on layers separate from the original drawing layers and shall be named descriptively
to represent the as-built features. (i.e.- Layer “wat ab” and “wat ab txt” for water as-built linework and text, respectively.) Drawing entities are to be shown on the correct layer. All as-built entities shall have color and line type set “by layer”. Text sizes shall be relative to the plotted scale. Additional details or exploded views shall be include to accurately and fully represent the as-built conditions.

3. Certification by surveyor that the as-built information shown is accurate and that all improvements shown were constructed within or on public rights-of-way, easements or property specifically owned by the Owner. Certification shall be to the Owner, Engineer and St. Johns River Water Management (if applicable.)

4. No linework and text shall be erased from the original design (construction) drawings during the as-built drawing preparation. Original linework or text shall be circled if accurate or stricken (not erased) if not with the accurate information noted/shown. New linework and text shall be provided to accurately show the as-built information for the constructed improvements. Revisions to design dimensions alone will not be permitted.

5. Pressure Pipeline and Utility Conduit Improvements: For utility improvement projects, horizontal locations of the constructed pipelines with respect to the right-of-way lines or other readily visible, permanent features at 100 foot minimum intervals and at critical locations such as road intersections shall be shown. For treatment plant and pump station improvements, horizontal locations shall be provided at 20 foot intervals. Vertical locations of the constructed pipelines by elevation of centerline of pipe for above ground/exposed pipe or with respect to finished grade over buried pipe shall be shown at 100 feet minimum intervals. (i.e. final cover) For underground piping, all valves, blow-offs, stub-outs, pigging stations, fire hydrants, backflow preventers and services shall be located horizontally in relation to readily visible, permanent features with three way horizontal dimensions less than 100 feet, each. Three way dimensions to all buried fittings on treatment plant and pump station improvement projects shall be provided. If adequate features are not available, a station and offset dimensioning system can be used if prior approval is obtained from the Engineer. For above ground/exposed pipe, as-built dimensions between fittings or flanges shall be provided. Separations between sanitary hazards to potable water and reclaimed water mains per FDEP shall be shown.

6. Gravity Pipeline Improvements: Show elevations for all inverts, manhole tops, inlet throats/weirs, grate tops, etc. Show size and type of each structure. As-built length, size and type of pipes between the structures shall be shown. All service laterals and cleanouts shall be located
horizontally to readily visible, permanent features with three way horizontal dimensions less than 100 feet, each. If adequate features are not available, a station and offset dimensioning system can be used if prior approval is obtained from the Engineer. A labeling and dimension table scheme is recommended for the three way or station/offset dimensioning. (i.e.-constructed feature labeled as “A”, permanent feature labeled as “B”, “A”-“B” dimension shown in table for distance measured between the two. Use continuous labeling and complete single table per plan sheet.) Separations between gravity “sanitary hazards” to potable water and reclaimed water mains per FDEP shall be shown.

7. Roadway Improvements: Elevation, size and location of swales, ditches, gutter flow-lines, edge of pavement, and road crown on both sides of the road if applicable shall be provided at 100 foot minimum intervals and at critical areas such as intersections and inlets/flumes. As-built points of curvature, tangent and vertical intersection, along with radii of road alignment, intersecting streets and driveways and other alignment information shall be provided.

8. Stormwater Improvements: The limits, slopes and bottom depths of stormwater ponds, swales and other retention areas shall be provided. All stormwater piping information shall conform to the Gravity Pipeline Improvement requirements. Size, type, material, and elevations of all stormwater structures, including appurtenances such as weirs, orifices, skimmer plates, etc. shall be shown. As-built information shall conform to St. Johns River Water Management District requirements.

9. Treatment Facility Improvements: Location, size, number, and type of treatment equipment and structures shall be shown. Applicable requirements of as-built information listed herein for similar improvements shall be required.

10. Building Improvements: Finished floor elevations, ceiling heights, building locations, wall opening dimensions, equipment (electrical, mechanical, plumbing) locations, etc. shall be provided. Change of material shall be specifically noted as such.

11. Landscaping Improvements: Number, type, size, and general location of installed plant material shall be provided. Change of material shall be specifically noted as such. Location of irrigation meters, services, manual valves, automatic valves, controllers, rain shut off switches, etc. shall be shown. Changes to the designed irrigation system shall be shown.

12. Other Improvements: Changes from the original design of other improvements such as electrical, mechanical and structural improvements
shall be noted as such on the as-built drawings with the size, number, type and location of the constructed/installed improvements noted.

13. Contractor may be required to reimburse the Owner for services rendered by the Engineer for review of multiple resubmittals per SC-6.17, 1. of Section 00800, Supplementary Conditions.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01730

OPERATING AND MAINTENANCE DATA

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. Compile product data and related information appropriate for Owner's maintenance and operation of products furnished under Contract.

2. Prepare operating and maintenance data as specified in this Section and as referenced in other pertinent sections of the Specifications.

3. Instruct Owner's personnel in maintenance of products and in operation of equipment and systems.

4. Digital (pdf) files are also required. The Owner may accept ‘digital only’ submittals; however, this is at the Owner’s discretion.

B. Related Requirements Described Elsewhere:

1. Section 01340: Shop Drawings

2. Section 01720: Project Record Documents

3. Section 01740: Warranties and Bonds

1.02 QUALITY ASSURANCE

A. Preparation of data shall be done by personnel:

1. Trained and experienced in maintenance and operation of described products.

2. Familiar with requirements of this Section.

3. Skilled as a technical writer to the extent required to communicate essential data.

4. Skilled as draftsman competent to prepare required drawings.
1.03 FORM OF SUBMITTALS

A. Prepare data in form of an instructional manual for use by Owner's personnel.

B. Hard Copy Format:

1. Size: 8½” x 11 inches

2. Paper: 20 pound minimum, white, for typed pages.

3. Text: Manufacturer's printed data, or neatly typewritten

4. Drawings:
 a. Provide reinforced punched binder tab, bind in with text.
 b. Reduce larger drawings and fold to size of text pages but not larger than 14 inches x 17 inches.

5. Provide fly-leaf for each separate product, or each piece of operating equipment.
 a. Provide typed description of products and major component parts of equipment.
 b. Provide indexed tabs

6. Cover: Identify each volume with typed or printed title "OPERATING AND MAINTENANCE INSTRUCTIONS". List:
 a. Title of project
 b. Identity of separate structure as applicable.
 c. Identity of general subject matter covered in the manual.

7. Binders:
 b. Maximum post width: 2 inches.
 c. When multiple binders are used, correlate the data into related consistent groupings.
C. Electronic Format Copy

1. Provide electronic copy of operation and maintenance data on CD/DVD. File(s) should be organized/named to correspond with hard copy.

1.04 CONTENT OF MANUAL

A. Neatly typewritten table of contents for each volume, arranged in systematic order.

1. Contractor, name of responsible principal, address and telephone number.

2. A list of each product required to be included, indexed to content of the volume.

3. List, with each product, name, address and telephone number of:

 a. Subcontractor or installer

 b. A list of each product required to be included, indexed to content of the volume.

 c. Identify area of responsibility of each

 d. Local source of supply for parts and replacement

4. Identify each product by product name and other identifying symbols as set forth in Contract Documents.

B. Product Data:

1. Include only those sheets which are pertinent to the specified product.

2. Annotate each sheet to:

 a. Clearly identify specific product or part installed

 b. Clearly identify data applicable to installation

 c. Delete references to inapplicable information.

C. Drawings:

1. Supplement product data with drawings as necessary to clearly illustrate:

 a. Relations of component parts of equipment and systems

2. Coordinate drawings with information in Project Record Documents to assure correct illustration of completed installation.
3. Do not use Project Record Documents as maintenance drawings.

D. Written text, as required to supplement product data for the particular installation:
 1. Organize in consistent format under separate headings for different procedures.
 2. Provide logical sequence of instructions of each procedure.

E. Copy of each warranty, bond and service contract issued.
 1. Provide information sheet for Owner's personnel, give:
 a. Proper procedures in event of failure
 b. Instances which might affect validity of warranties or bonds.

1.05 MANUAL FOR MATERIALS AND FINISHES

A. Submit four copies of the complete manual in final form.

B. Content: for architectural products, applied materials and finishes:
 1. Manufacturer's data, giving full information on products
 a. Catalog number, size, and composition
 b. Color and texture designations
 c. Information required for reordering special manufactured products
 2. Instructions for care and maintenance
 a. Manufacturer's recommendation for types of cleaning agents and methods.
 b. Cautions against cleaning agents and methods which are detrimental to product.
 c. Recommend schedule for cleaning and maintenance.

C. Content, for moisture protection and weather-exposed products:
 1. Manufacturer's data, giving full information on products.
 a. Applicable standards
 b. Chemical composition
c. Details of installation

2. Instructions for inspection, maintenance and repair

D. Additional requirements for maintenance data: Respective sections of the Specifications.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. Compile specified warranties and bonds as specified in these Specifications.

2. Co-execute submittals when so specified.

3. Review submittals to verify compliance with Contract Documents.

4. Submit to Engineer for review and transmittal to Owner.

B. Related Work Described Elsewhere:

1. Instructions to Bidders: Bid Bonds

2. Performance Bond and Payment Bond

3. Public Construction Bond

1.02 SUBMITTAL REQUIREMENTS

A. Assembly warranties, bonds and service and maintenance contracts, executed by each of the respective manufacturers, suppliers, and subcontractors.

B. Number of original signed copies required: Two each.

C. Table of Contents: Neatly typed, in orderly sequence. Provide complete information for each item.

1. Product of work item

2. Firm, with name of principal, address and telephone number

3. Scope

4. Date of beginning of warranty, bond or service and maintenance contract

5. Duration of warranty, bond or service maintenance contract.

6. Provide information for Owner's personnel:
a. Proper procedure in case of failure.

b. Instances which might affect the validity of warranty or bond.

7. Contractor, name of responsible principal, address and telephone numbers.

1.03 FORM OF SUBMITTALS

A. Prepare in duplicate packets

B. Format:

1. Size 8 ½” x 11 inches, punch sheets for standard three-post binder.
 a. Fold larger sheets to fit into binders.

2. Cover: Identify each packet with typed or printed title "WARRANTIES AND BONDS". List:
 a. Title of Project
 b. Name of Contractor

C. Binders: Commercial quality, three-post binder, with durable and cleanable plastic covers and maximum post width of two inches.

1.04 WARRANTY SUBMITTALS REQUIREMENTS

A. For all major pieces of equipment, submit a warranty from the equipment manufacturer. Manufacturer's warranty period shall be concurrent with Contractor's for one (1) year, unless otherwise specified, commencing at the time of final acceptance by Owner.

B. Contractor shall be responsible for obtaining certificates for equipment warranty for all major equipment which has at least a 1 hp motor or which lists for more than $1,000. Engineer reserves the right to request warranties for equipment not classified as major. Contractor shall still warrant equipment not considered to be "major" in the Contractor's one-year warranty period even though certificates of warranty may not be required.

C. In the event that the equipment manufacturer or supplier is unwilling to provide a one-year warranty commencing at the time of Owner acceptance, the Contractor shall obtain from the manufacturer a two (2) year warranty commencing at the time of
equipment delivery to the job site. This two-year warranty from the manufacturer shall not relieve the Contractor of the one-year warranty starting at the time of Owner acceptance of the equipment.

D. Owner shall incur no labor or equipment cost during the guarantee period.

E. Guarantee shall cover all necessary labor, equipment and replacement parts resulting from faulty or inadequate design, improper assembly or erection, defective workmanship and materials, leakage, breakage or other failure of all equipment and components furnished by manufacturer.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 02000
SOIL BORINGS

PART 1 - GENERAL

1.01 DESCRIPTION

A. Soil boring information is included in a report prepared for the Owner and the Engineer by the Geotechnical Consultant. The report is reproduced in the contract documents.

B. The boring data sheet has been used by the Engineer for the design of the foundations for the structures included in the Project.

C. The subsurface information contained therein was obtained for design purposes and may not be an adequate representation of actual conditions for project construction. Information shown, including water levels, represents existing conditions at the specific boring locations at the time the borings were made. All risks resulting from use or interpretation of the subsurface data shown shall be borne by the Contractor.

D. This data is available for information only and may be useful as a guide in estimating and planning the work.

E. If additional subsurface information is required by the Bidder it shall be the Bidder's responsibility to obtain such data.

F. Refer to the GENERAL CONDITIONS for further explanation of subsurface conditions.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
TO: Mr. John Mischle
Quentin L. Hampton Associates, Inc.
P.O. Drawer 290247
Port Orange, Florida 32129

RE: Geotechnical Services - Soil & Groundwater Evaluations
Pond Expansion - New Smyrna Beach Utility Commission
New Smyrna Beach, Florida

June 6, 2017
BET Project No. G17076

Dear Mr. Mischle:

As requested, Bechtol Engineering and Testing, Inc. (BET) has conducted auger borings at the subject site. The purpose of BET’s borings was to gain general insight as to the soil and groundwater characteristics in the area of proposed reclaimed water management systems, and based on these characteristics to provide recommended design parameters for reclaimed water storage system design.

Approximate locations of the borings performed are shown on the Boring Location Plan presented on the attached Figure 1. Encountered subsurface soils and encountered and estimated seasonal high groundwater levels are summarized on the Soil Profiles, also presented on Figure 1.

Based on the encountered conditions, BET would recommend the following design parameters be utilized in reclaimed water storage system design:

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>RECOMMENDED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATION OF SEASONAL HIGH GROUNDWATER (FEET, NAVD88)</td>
<td>28.2</td>
</tr>
</tbody>
</table>

NOTES:
1. Elevations based on interpolation of ground surface elevation at boring location from topographic data shown on Volusia County LiDAR Mapping. Actual elevations may vary.
2. Recommended seasonal high groundwater level is based on averages of the values measured in the field at two test locations.

The services requested and performed are for the sole purpose of aiding the design engineer in evaluating and designing reclaimed water management systems. Variations in subsurface conditions not disclosed by the borings performed may occur, and could influence the performance and construction of such systems.
BET appreciates the opportunity to be of service, and trusts this information is complete and sufficient for your immediate needs. However, if you should have any questions or if BET may be of further service, please do not hesitate to call.

Respectfully,

Bechtol Engineering and Testing, Inc.
Certificate of Authorization No. 00005492

Thomas Bechtol, P.E.
President / Principal Engineer
Florida License No. 38538

This item has been electronically signed and sealed by Thomas R. Bechtol, P.E. on the time and date stamp shown using digital signature. Printed copies of this document are not considered signed and sealed, and the signature must be verified on any electronic copies.
PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. A soils investigation report has been prepared for the site of this work by Universal Engineering Sciences, hereafter referred to as the Soils Engineer. The soils investigation report has been included as an appendix to this section.

B. This report contains recommendations regarding site preparation. The Contractor shall comply with the intent of the recommendation.

1.02 QUALITY ASSURANCE

A. Bidders should visit the site and acquaint themselves with all existing conditions. Prior to bidding, bidders may make their own subsurface investigations to satisfy themselves as to site and subsurface conditions, but all such investigations shall be performed under time schedules and arrangements approved in advance by the Owner.

B. Soils Engineer may be retained by the Owner to observe performance of work in connection with excavating, trenching, filling, backfilling and grading.

PART 2 - MATERIALS AND EQUIPMENT
(Not Applicable)

PART 3 - EXECUTION
(Not Applicable)

END OF SECTION
SECTION 02050

DESTRUCTION

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work:

1. This Section includes furnishing all labor, materials, equipment and incidentals required for selective site demolition.

2. This Section provides for the complete or partial removal and disposal of specified existing structures, foundations, piping, mechanical, and miscellaneous appurtenances encountered during construction operations.

3. This Section specifies certain activities necessary to maintain and facilitate operation during and immediately following construction and do not purport to cover all the activities necessary. The Contractor shall exercise due care for the existing system operation and shall maintain continuous operation of the existing lift station and the overall wastewater service and minimize operation inconvenience. In accordance with this requirement, a Demolition and Removal Plan shall be developed in accordance with Paragraph 1.06.

4. Demolition includes:

a. Demolition, complete or partial removal and cutting of existing piping and/or structures as required for the new construction.

b. Disposal of equipment and material not wanted by the Owner.

c. Abandonment and removal of all panels, wiring, conduit, equipment and materials required to complete installation of proposed improvements.

5. The Contractor shall examine the various drawings regarding the proposed site, visit the proposed site and determine for himself the extent of the work, the extent of work affected therein and all conditions under which he is required to perform the various operations.

6. Specific piping, equipment and/or structures to be partially or completely demolished are identified in the Construction Drawings.
1.02 PERMITS AND NOTICES

A. Permits and Licenses: Contractor shall obtain all necessary permits and licenses for performing the work and shall furnish a copy of same to the Engineer prior to commencing the work. The Contractor shall comply with the requirements of the permits.

B. Notices: Contractor shall issue written notices of planned demolition to Owner, Engineer and companies or local residents located within the project site. Notices shall be received with at least 48 hours in advance of the planned demolition activity.

C. Utility Services: Contractor shall notify utility companies or local authorities furnishing gas, sewer, water, electrical or telephone to remove any equipment owned by them in structures to be demolished and to remove, disconnect, cap or plug their services to facilitate demolition.

1.03 CONDITIONS OF PIPING AND/OR STRUCTURES

A. The Standard Building Codes shall control the demolition, modification or alteration of the existing piping and structures.

B. No blasting shall be done on site. The Contractor shall not bring or store any explosives on site.

1.05 DISPOSAL OF MATERIAL

A. Salvageable material shall become the property of the Owner, if the Owner requests any specific item. The Contractor shall dismantle all materials to such a size that it can readily handled, and deliver any of this salvageable material requested by the Owner to a storage area designated by the Owner.

B. The following materials are examples of the type that the Owner may maintain ownership of:

1. All wiring, panels, and other equipment currently in use to run the existing I&C system.

2. Any chairs, tables, televisions, or other equipment found in the existing operations building.

C. Any materials that the Owner rejects shall become the Contractor’s property and must be removed from the site.
D. Concrete, concrete block and unsalvageable bricks shall be hauled to a waste disposal site by the Contractor.

E. All other material shall be hauled to a waste disposal site by the Contractor.

F. The storage of or sale of removed items on the site will not be allowed.

1.06 SUBMITTALS

A. Submit to the Engineer for approval, two (2) copies of the proposed Demolition and Removal Plan for the modifications as shown on the Drawings or as specified herein prior to the start of work. Include in the schedule the coordination of shutoff, capping and continuation of utility service as required. The Demolition and Removal Plan shall include as a minimum, the following:

1. A detailed sequence of demolition and removal work to insure the uninterrupted operation of the Owner’s utility systems, and the expeditious completion of the Contractor’s work.

2. Evidence (by signature) of approval by the Owner of the work plan.

B. Before commencing demolition work, all modifications necessary to bypass the affected portion of the system will be completed. Contractor shall coordinate with the residential Owner’s personnel to determine the locations of the affected valves, fittings and water meters.

C. The above procedure must be followed for each individual demolition operation.

1.07 TRAFFIC AND ACCESS

A. Conduct demolition and modification operation, and removal of piping and debris to ensure minimum interference with roads, streets, and sidewalks both onsite and off-site and to ensure minimum interference with occupied or used facilities.

B. Contractor shall at all times maintain safe and convenient access to the existing site.

C. Do not close or obstruct streets or walks without permission from the Owner and Engineer. Provided alternate traffic routes around closed or obstructed access ways.

1.08 DAMAGE

A. Promptly repair damage caused to adjacent facilities by demolition operations at no cost to the Owner.

1.09 UTILITIES
A. Maintain existing utilities to remain in service and protect against damage during demolition operations. This may include the installation/construction of bypass piping where necessary.

B. Do not interrupt existing utilities serving occupied or used facilities, except when authorized by the Owner and Engineer. Provide temporary services during interruption to existing utilities as required by the Owner.

C. The Contractor shall cooperate with the Owner to shut off utilities serving the existing facilities as required by demolition operations. If service must be cut off to existing customers, the Owner must have at least three (3) days notice to make necessary preparations.

D. The Contractor shall be solely responsible for making all necessary arrangements and for performing any necessary work involved in connection with the discontinuance or interruption of all public and private utilities or services under this jurisdiction of utility companies.

E. All utilities being abandoned shall be disconnected and terminated at the service mains in conformance with requirements of the utility companies or the municipality owning or controlling them.

1.10 POLLUTION CONTROL

A. For pollution control, use water sprinkling, temporary enclosures, and other suitable methods as necessary to limit the amount of dust and dirt rising and scattering in the air to the lowest level of air pollution practical for the conditions or work. Comply with the governing regulations.

B. Clean structures and improvements of all dust, dirt and debris caused by demolition operations as directed by the Engineer. Return areas to conditions existing prior to the start of work.

1.11 QUALITY CONTROL

A. Protect all existing materials and equipment to be salvaged or reused from damage.

B. Cap or plug all lines to be abandoned.

C. Leave all exposed ends of all pipe covered and safe.

PART 2 - MATERIALS (NOT USED)
PART 3 - EXECUTION

3.01 SEQUENCE OF WORK

A. The sequence of demolition and removal of the existing facilities will be in accordance with the approved Demolition and Removal Plan as specified in Paragraph 1.06 of this Section. The Contractor is solely responsible for construction and demolition sequencing of the Work.

3.02 REMOVAL OF EXISTING PIPING AND APPURTEANCES

A. Subject to the constraints of maintaining the existing systems in operation; existing piping and appurtenances not necessary for the operation of the new system shall be removed as shown or indicated on the Drawings.

B. All piping and appurtenances shall be cleaned, flushed and drained. Equipment to be retained by the Owner as specified in Paragraph 1.05 above shall be dismantled sufficiently to permit thorough cleaning and draining. All valves shall be left open. All abandoned piping shall be capped and sleeves and openings remaining after removal of the existing equipment, piping, and appurtenances shall be plugged and sealed as shown on the Drawings.

END OF SECTION
SECTION 02100
EXCAVATION, BACKFILL AND EMBANKMENT

PART 1 - GENERAL

1.01 SCOPE

A. The work covered by this section and required by this Contract includes the completion of all excavation, backfilling and embankment to the lines and grades indicated by the drawings, as further specified below, and necessary to the following operations:

1. Stripping, storing and replacing topsoil;
2. Excavation and backfill for pipe trenches;
3. Excavation and embankment for road, grading and drainage of the site;
4. Excavation and backfill for buildings and structures; and
5. Borrow excavation.

1.02 CHARACTER OF MATERIAL.

A. The Contractor must satisfy himself regarding the character and amount of loam, clay, sand, quicksand, muck, gravel, rock, water and all other material to be encountered in the work to be performed.

1.03 DESCRIPTION

A. The Contractor shall excavate, protect and backfill all foundations, trenches, tunnels and other excavations that may be necessary for completing the work to be done under this Contract. All excavation shall be in open cuts, except where and to such extent as the Engineer may authorize or direct that the same be done in tunnel, or where such is specified in the Special Requirements or Contract drawings. Trenches may, in general, be excavated and backfilled either by machinery, or by hand as the Contractor may elect; provided, however, that the Engineer shall be empowered, wherever he shall decide that such necessity exists, to direct that hand excavation by employed; and, provided, further that backfilling by hand shall be done to the extent hereinafter specified. The Contractor shall not claim for extra compensation due to the fact that hand, instead of machine, excavation may be necessary from any cause whatever.

B. The Contractor shall perform all excavation of every description and of whatever substances encountered, to the lines and grades or depths indicated by the drawings, as specified herein, or as directed by the Engineer. Embankments shall be prepared in accordance with the Specifications, and as necessary to bring the ground surface to
the subgrade elevation for roads and to finished grade elevations for other areas as shown on the drawings, or directed by the Engineer. All excavated material not required for backfill or embankment shall be removed and wasted or otherwise disposed of as directed or specified.

C. The term "subgrade" as used herein shall have the meaning given below:

1. The bed of a trench prepared as specified to receive pipes or other conduits;
2. The area upon which the lower surface of roadway paving, walks, gutters, or curb rests;
3. The surface of excavation or embankment areas prepared to receive topsoil; and
4. The areas upon which rest the planned bottom of footings, foundations, or slabs.

PART 2 - MATERIALS

2.01 TOPSOIL

A. Stripping. The area from which topsoil is to be stripped and the locations where it is to be stored shall be as shown on the drawings or as specified below. The topsoil shall be stripped to a depth of not less than six inches (6”). On all areas where any type of grading is to be performed, including the areas within the lines of buildings and structures, the topsoil shall be carefully removed and spread either on areas already graded or prepared for topsoil, or in stockpiles conveniently located to the areas which are later to receive application of topsoil.

B. Spreading. On areas intended to receive topsoil, the compacted subgrade shall be scarified to a depth of two inches (2”) for bonding topsoil with subsoil. The topsoil shall then be evenly spread, compacted and graded to the finished elevations shown on the drawings or as specified by the Engineer. Compaction shall be effected by a single pass of an approved roller.

2.02 REMOVAL AND STORAGE OF MATERIAL

A. In locations where the working space is limited, the material excavated from the first one hundred feet (100’) of any trench, or from such additional length as may be required, shall upon order of the Engineer, be removed at the Contractor's own cost and expense, as soon as excavated. The materials subsequently excavated shall be used to refill the trench. In no case will the Contractor be allowed to cast excavated material beyond curb of right-of-way lines, or on sidewalks or lawns, and the failure or refusal of the Contractor to comply with this requirement shall be sufficient cause for the Engineer to stop all work under the Contract.
B. In case more material is excavated from any trench than can be backfilled over the completed sewer or can be stored within the limits of the right-of-way, leaving space for the traffic and drainage as herein provided, the excess material shall be removed to some convenient place, provided by the Contractor. The Contractor shall at his own cost and expense bring back as much of the material so removed, as may be required to properly backfill the trench, if of the proper kind; or, if so directed by the Engineer, the Contractor shall, at his own cost and expense, furnish such other suitable material as may be necessary.

C. When it is necessary to haul soft or wet material over the streets, the Contractor shall provide suitable tight vehicles, or a pattern approved by the Engineer for this purpose.

2.03 SHEETING, BRACING AND SHORING

A. The Contractor shall furnish the material for, and do all timber shoring, bracing and sheeting necessary to perform and protect the excavation, and as required by the Engineer to protect the work, other structures, the public, and the Contractor's employees. If trench protection is necessary, per OSHA requirements, the Contractor shall account for the anticipated expense in the appropriate bid item, or in the unit cost for pipe installed, or a combination of both. If the Engineer deems that sheeting, bracing, or shoring is necessary, it shall be supplied by the Contractor at no additional expense to the Owner. Such sheeting, etc. may be removed as the work progresses, but where, in the opinion of the Engineer, damage may result through removal; it shall be left in place with payment therefore made as hereinafter provided. The right of the Engineer to order sheeting, etc. left in place shall not render the issuance of such order obligatory on the part of the Engineer.

B. All sheeting, etc. shall be arranged so that it may be withdrawn, as the trenches are backfilled, without injury to the pipe and its appurtenances, and without injury to or settlement of adjacent structures and pavements. All voids caused by withdrawal shall be immediately filled with sand or other satisfactory material and compacted by ramming or other method satisfactory to the Engineer.

C. No timber sheeting, bracing or shoring shall be left within 18 inches (18") of any natural ground surfaces or within 12 inches (12") of the subgrade of any rigid or flexible type pavement, or railroad roadbed. In any trench shoring system, no vertical member shall remain directly over the pipe and no horizontal member shall remain within 12 inches (12") of any pipe. After backfilling is started, no sheeting shall extend below the horizontal diameter of the pipe without the Engineer's approval. Sheetling left in place shall be cut off at such point as the Engineer may order, and the portions cut off shall be removed from the work.
D. If the Engineer determines that the material furnished is not of proper size or quality, or not properly placed, the Contractor shall furnish and place other and satisfactory material in an acceptable manner, and shall not be entitled to additional compensation for such corrective work.

PART III - EXECUTION

3.01 ORDER OF WORK

A. The Contractor shall submit a progress schedule as specified in Article 2.40 and shall carry on his work in strict accordance therewith. Deviations from the progress schedule may be made only with the approval of the Engineer.

B. Manholes shall be constructed either at the same time as the main sewer or immediately after its completion.

3.02 SEWER LINES AND GRADES. Sewer lines and grades shall be laid out and maintained during construction in the following manner.

A. Prior to the commencement of trench excavation, the Contractor shall prepare and submit to the Engineer for approval, detailed cut sheets provided by the Contractor's surveyor. The surveyor shall be registered in the State of Florida. Cut sheet shall show; the beginning and ending of manholes; the distance between manholes; the grade, size and type of line, the depth of cut; etc. The form of cut sheets shall be satisfactory to the Engineer. All expense for the preparation of cut sheets shall be borne by the contractor and be included in the unit price per foot of pipe. Cut sheets must be approved by the Engineer in writing before pipe laying operations may be permitted. It shall be the responsibility of the Contractor to prepare cut sheets far enough in advance of his anticipated trenching schedule so that avoidable delay in the work will not occur.

B. Before beginning the excavation for any run of main sewer, the Contractor's forces, under the direction of the Engineer, shall:

1. Set control points for line and grade as given on the Drawings or as otherwise determined by the Engineer. In unpaved or unsurfaced areas, these points shall be placed on the top of stakes securely driven into the ground. In paved areas, there may be spikes driven into the paving or crosses cut into the paving, and in either case, enclosed in a painted circle. Stakes or points shall be sufficiently offset from the centerline so as to be undisturbed during the excavation and pipe laying operations. The offset shall be on the side of the centerline opposite to that on which excavation will be thrown.

2. As the rough excavation is completed, the Contractor's surveyor shall place grade or batter boards of finished, straight lumber across the trench opposite each stake or point. The grade boards shall be securely supported so as not to be subject to accidental displacement. The top of each board shall be leveled and set at the same distance above the sewer invert. A nail shall then be
driven into the top of each board on the centerline of the sewer and each nail connected by a string line pulled taut.

3. The preparation of the final subgrade and the pipe laying shall then proceed in the manner specified herein, beginning at the manhole having the lower invert and working upgrade and using the string line as control for maintaining sewer grade and horizontal alignment. A straight wooden pole suitably marked and with a right-angled offset at the bottom to project past the bell of the pipe and rest upon the pipe invert, shall be used to check the vertical distance from string line to invert.

C. The use of laser beams shall be acceptable as a method of controlling pipe alignment and grade.

3.03 WIDTH AND DEPTH OF TRENCHES

A. From the subgrade elevation to an elevation at least 12 inches (12”) above the top of the outside barrel of the pipe, the banks of trenches in all cases shall be excavated to vertical lines, and the trenches shall be not less than 12 inches (12”) nor more than 16 inches (16”) wider nor more than eight inches (8”) in width is provided on each side of the barrel of the pipe. If sheeting is required, the foregoing dimensions shall be applicable to the inside faces of the sheeting.

B. From a point twelve inches (12”) above the top of the outside barrel of the pipe to the surface, the banks of trenches in all streets, roads or highways, paved or unpaved, shall be kept as nearly vertical as possible, and in no case shall the width of trench at the top exceed the outside diameter of the pipe plus 40 inches (40”). If the specified maximum width of trench cannot otherwise be maintained, the Contractor shall install temporary sheeting at his own cost and expense. Where sewers are to be constructed on rights-of-way or easements in open country, the specified maximum width of trench at the top may be exceeded only if the construction is kept entirely within the limits of the easements or rights-of-way and can be carried on without damage to adjoining property.

C. Except at locations where excavation of rock or unsuitable material is required, care shall be taken not to excavate below the depths specified, when rock is encountered, it shall be removed to a depth six inches (6”) below the outside bottom of the pipe at the barrel. When the material encountered at subgrade is unstable, it shall be removed from under the pipe and on each side of the pipe for a distance of one (1) diameter of the pipe. Such rock or unsuitable material excavation below subgrade shall be backfilled with moist clay, sand, bankrun gravel, or other suitable material compacted to the satisfaction of the Engineer, and the bed thus formed shaped as required above. In rock excavation, if trenches are shattered by blasting below the lines of excavation specified herein, the trench shall be refilled to subgrade with sand, well tamped earth, or concrete, if required by the Engineer, at the Contractor's expense. If earth trenches are excavated beyond the specified depths, they shall be backfilled to the proper grade with suitable, thoroughly tamped material at the expense of the Contractor.
3.04 PREPARATION OF FOUNDATION

A. In earth trenches, the bottom thereof shall be carefully rounded to fit the lower ninety degrees (90°) of the circumference of the pipe, i.e., so that one-fourth (1/4) of the external circumference of the pipe will rest firmly on the undisturbed soil. Bell-holes shall be excavated to ensure that the barrel of the pipe will rest for its entire length upon the trench bottom.

B. Bell-holes shall be properly cut to provide free support of the pipe barrel and shall be directed by the Engineer. All irregularities and cavities, either in earth or rock excavation, in the bottom of trenches or tunnels, shall be filled up to a level which will support ninety degrees (90°) of the lower pipe circumference with selected material free from large gravel, rocks and stones, firmly compacted before pipe lines are laid therein.

C. Where, in the opinion of the Engineer, the ground does not afford a sufficiently firm foundation, the Contractor shall construct a timber foundation, or shall excavate the trench to such increased depth as may be directed, and then shall bring up the bottom of the trench to the required level and form with such material and in such manner as the Engineer may direct.

3.05 CONCRETE CRADLE AND ENCASEMENT

A. The profiles generally indicate the approximate vertical limits where concrete cradle and encasement are necessary to support the anticipated loads on completed sewers for the widths of trench as required for each size and class of pipe, based on the crushing strength of the pipe.

B. The Contractor is warned that if the trench widths or clearances between pipe and trench walls or face of sheeting, as specified above, are exceeded, he will be required to furnish in all locations at his own expense either concrete cradle or encasement as directed by the Engineer.

C. It is anticipated that subsurface conditions may require a cradle for a portion of the project to provide an adequate foundation, even though the ultimate anticipated load on the pipe is less than the minimum crushing strength for sand bearing. The Contractor shall place the cradle or encasement at the location, and of the materials, as directed and required by the Engineer. The Contractor will not be paid for any cradle beyond the required widths of trench.

D. All excavation made beyond the required limits shall be at the Contractor's expense.
3.06 LENGTH OF OPEN TRENCH

A. The Engineer shall have the right to limit the amount of trench opened in advance of pipe laying and the amount of pipe laid in advance of backfilling, but in no case, except when leakage tests are required by the Engineer, shall these amounts exceed three hundred feet (300’) and one hundred feet (100’), respectively. Trench excavation shall be fully completed, except for the shaping of the bottom of the trench, at least 20 feet (20’) in advance of the pipe placement and shall be kept free from obstructions, except that at the close of work at night, or at the discontinuance of work, the pipe laying may be completed to within five feet (5’) of the end of the open trench.

B. The Engineer shall be empowered, at any time, to require the refilling of open trenches over completed pipe lines, if, in his judgment, such action is necessary, and the Contractor shall thereby have no claim for extra compensation even though to accomplish said refilling, he is compelled temporarily to stop excavation or other work at any place.

C. If the work is stopped on any trench, for any reason except by order of the Engineer, and the excavation is left open for an unreasonable length of time (in the opinion of the Engineer) in advance of construction, the Contractor shall, if so directed, refill such trench at his own cost and shall not again open said trench until he is ready to complete the structure therein.

3.07 ACCOMMODATION OF TRAFFIC

A. Streets shall not be unnecessarily obstructed and, unless the Engineer, in writing, shall authorize the complete closing of the street, the Contractor shall take such measures at his own expense as may be necessary to keep the street or road open and safe for traffic.

B. The Contractor shall construct and maintain without extra compensation such adequate and proper bridges over excavations as may be necessary or as directed for the safe accommodation of pedestrians or vehicles. The Contractor shall furnish and erect without cost to the Owner substantial barricades at crossings of trenches, or along the trench, to protect the traveling public.

C. The Contractor shall not obstruct fire hydrants.

D. The roadway on one side of the line of work shall be kept open at all times.

E. The streets, crosswalks and sidewalks shall be kept clean, clear and free for the passage of vehicles or pedestrians, unless otherwise authorized in writing by the Engineer. A straight and continuous passageway on sidewalks and over crosswalks, at least three feet (3’) in width, shall be preserved free from all obstruction.

F. Where deemed necessary, such additional passageway as may be directed shall be maintained free from obstructions.
G. In narrow or congested streets or alleys, when so directed, the Contractor shall complete his work up to a point designated by the Engineer before opening the work ahead, in order to give access to garages and other places. The Contractor shall in all cases so arrange his work as to cause the least inconvenience to property owners consistent with the proper precaution of the work as determined by the Engineer.

3.08 ACCOMMODATION OF DRAINAGE

A. Gutters, sewers, drains and ditches shall be kept open at all times for surface drainage. No damming or ponding of water in gutters or other waterways will be permitted, except where stream crossings are necessary and then only to an extent which the engineer shall consider necessary. The Contractor will be responsible for all clean-up to existing utilities caused by their activities.

B. The Contractor shall not direct any flow of water across or over pavements except through approved pipes or properly constructed troughs and he shall, when so required at his own expense and cost, provide pipes or troughs of such sizes and lengths as may be required and place the same as directed.

C. The grading in the vicinity of sewer trenches shall be controlled so that the ground surface is properly pitched to prevent water running into trenches.

3.09 PUMPING

A. The Contractor shall keep all excavations free from water, at his own expense, while structural work is in progress, and to such extent as may be necessary while excavation work along is being carried on.

B. The Contractor shall build all dams and other devices necessary for this purpose, including lowering the water table below trench bottom by well points and pumping, and provide and operate pumps of sufficient capacity for dewatering the excavations.

C. He shall provide for the disposal of the water removed from excavation in such manner as shall not cause injury to the public health, to public or private property, to the work of other Contractors, to any portion of the work completed or in progress, or produce any impediment to the use of the highways, roads, lanes, and streets by the public.

D. Any dewatering required shall be performed at the Contractor's expense. Payment for dewatering shall be included in the Contractor's bid prices for pipe or other structures requiring dewatering for installation. If holes made for installation of well points are installed in a roadway, shoulder, or under a structure, these holes shall be filled with lean grout prior to backfill and compaction. Any permits needed for dewatering shall be obtained and paid for by the contractor.

3.10 EMBANKMENT
A. Where embankment is necessary to support the foundations of the pipe or structure, it shall be made to the height, width and slopes shown on the drawings, or as directed. The entire embankment, or such portion thereof as may be deemed necessary by the Engineer, shall be made prior to the construction of the sewer, structure, or the foundation thereof, at such time and in such order as the Engineer may direct; and the embankment, sewer, or structure, and appurtenances, which may be laid thereon or therein, shall be maintained by the Contractor, at his own cost and expense, until the completion of the period of one (1) year from and after the date of the Certificate of Completion and Acceptance.

B. After carefully grubbing and clearing the ground, removing all loose rock and stone, and all muck and improper material, to such a depth as the Engineer may determine, the embankment shall be built up of good loam, gravel or sand, or other selected and approved material, free from all stone above four inches (4”) diameter, and not containing in any place a proportion of stones exceeding one (1) part stone to three (3) parts earth.

C. In cast material which is unsatisfactory for the foundation of any embankment is encountered, said material shall be removed to such depth, and for such length and width as may be directed by the Engineer. Payment for the removal of material unfit for the foundation of an embankment will be made at the price bid or stipulated per cubic yard for excavation below subgrade.

D. The material for embankment shall be deposited in layers of not more than nine inches (9”) in thickness; each layer shall be separately compacted by heavy, grooved iron rollers, or where such rollers cannot be used, by heavy paver's rammers. The embankment shall be watered during rolling, if so required. No breaks or irregularities in the distribution of the material or the formation of the layers will be allowed. The whole embankment shall be carried up evenly to the height given by the Engineer in such a manner as to make a compact and solid foundation. When pipe is to be laid in a fill, the embankment shall be brought to a height of at least one foot (1’) above the proposed top of the pipe before the trench is excavated. The embankment shall then be excavated to the proper form and grade, and the sewer placed thereon; after which the embankment shall be carried up to a height of not less than three feet (3’) above the top of the sewer, the material being placed and rolled or rammed in layers as above described.

3.11 BACKFILLING TRENCHES

A. It is the intent of the following requirements for the backfilling of trenches to specify materials and methods which will:
1. Result in thorough compaction of the backfilled material without the displacement of the grade or alignment of the sewer line and its appurtenances, and

2. Eliminate settlement of the backfilled material.

B. If displacement of the sewer or settlement of the backfilled material does occur, it will be considered as conclusive evidence of improper workmanship or the inclusion of unsuitable materials or both, and it shall be the Contractor's responsibility, at his own expense, to remove and recompact the settled material and regrade and realign the sewer. During the course of the backfilling operation, the Engineer may, at any location of depth of trench, make tests to determine whether the Contractor's compaction operations are sufficient to meet the requirements specified below.

C. The procedure of backfilling shall be as follows:

1. After the structure, pipe, or conduit and its appurtenances have been installed or constructed, the excavation, to a height of at least two feet (2') above the top of pipe or conduit, shall be refilled with clean earth deposited in four inch (4") layers and solidly rammed down and tamped around the pipe, or conduit and under it, with mechanical tampers and proper tools made for this purpose. The operation shall be done in such manner as not to disturb the structure. The area around the pipe shall be hand-tamped.

2. The earth, to the height specified above, shall be carefully thrown in with hand shovels; under no condition shall any other means than hand shoveling, such as pushing in with heavy equipment be used.

3. The remainder of the trench, except as described below, shall then be refilled evenly to the required height in layers, each layer not to exceed six inches (6") in thickness after compaction. Mechanical tampers shall be used so as to produce a density of backfill (as determined by weight) at the bottom of each layer of not less than ninety-five percent (95%) of the optimum density of that material based upon the AASHTO T-180 modified proctor. The earth shall be properly rammed as directed, and wetted as required as the work progresses.

4. Care shall be taken to carry the fill up evenly on opposite side of the sewer, other trench excavations, and around the sides of all structures.

D. If, in the opinion of the Engineer, the material being used for backfilling is of such character that satisfactory results cannot be obtained by tamping and ramming, the Contractor shall backfill and puddle the excavations in such manner and at such times as the Engineer may direct.

E. If the material excavated is not clean earth, as above specified, the best of the materials excavated shall be used in backfilling, in position and manner as directed by the Engineer.
F. In rock trenches, selected earth, sand or gravel shall be provided and used as backfill in the manner hereinbefore described to a height of two feet (2’) above the top of the sewer. The backfill for the balance of the trench in all cases shall be of good earth, sand or gravel, which may contain stores not more than six inches (6”) in largest dimensions, but not in proportion exceeding twenty percent (20%) of the total volume of backfill.

G. No bulkheads, or retaining walls for the backfilling, will be allowed in the trenches over the sewer, except for temporary use.

H. Should there be a deficiency of proper material for refilling the Contractor shall furnish acceptable material at his own cost and expense.

I. No house ashes, putrescible refuse or other material of unsatisfactory character shall be used in refilling, and the Contractor shall not permit the trench to be used as a dumping ground for refuse.

J. Testing of backfill in trenches shall be performed as deemed necessary by the Engineer or his representatives; the Contractor will supply and pay for the testing.

3.12 BORROW EXCAVATION

A. In cases where the amount of embankment exceeds the amount of excavation within the limits of the site as indicated by the Drawings, and where material is not available from other sources of contracts, the Contractor shall obtain sufficient, suitable material from borrow pits located entirely beyond the limits of the site unless the Engineer gives written permission to obtain such material from an area within the site.

B. The Contractor shall notify the Engineer sufficiently in advance of borrow excavation requirements to permit the Engineer to determine necessity and to view the proposed borrow pit.

C. Borrow obtained from within the site shall be removed to uniform lines and grades satisfactory to the Engineer, and in such a manner as will not to detract from the general appearance of the improvement and shall not create unsatisfactory conditions.

D. All borrow pits shall be stripped of brush, roots, grass and other vegetation prior to removal of material for embankment purposes.
3.13 BUILDINGS AND STRUCTURES

A. Excavation.

1. All excavation for buildings and structures shall be performed in the dimensions indicated on the Drawings. If suitable bearing is not encountered at the planned footing or foundation elevations, the excavation shall be carried to such elevations as are approved by the Engineer.

2. Prior to construction of foundations, the excavation shall be inspected by the Engineer and no foundation work shall be started prior to the Engineer's approval of the excavation. Care shall be exercised to avoid excavation below the depths indicated on the Drawings or as directed by the Engineer.

3. Where excavation is made below plan elevation or below elevations directed by the Engineer. Where excavation is made below plan elevation or below elevations directed by the Engineer, through the fault of the Contractor, the excavation shall be restored to the proper elevation in the manner described for backfill below, or the heights of walls or footings shall be increased, as may be directed by the Engineer, at the expense of the Contractor.

B. Drainage.

1. Grading in the vicinity of structures shall be controlled to prevent water running into excavated areas. Any accumulation of water in excavations shall be removed by pumping or other means at the Contractor's expense.

C. Backfill.

1. After completion of footings and walls, and the removal of forms, and prior to backfilling, the excavation shall be cleaned of all trash and debris.

2. Backfill material shall consist of the excavation or other materials free from trash, lumbar or other debris. It shall be placed in horizontal layers not exceeding six inches (6") in depth, moistened if required and compacted by hand or mechanical tampers to a density to prevent excessive settlement.

3.14 RESPONSIBILITY FOR CONDITION OF EXCAVATION

A. The Contractor shall be responsible for the condition of all excavations made by him. All slides and cave-ins shall be removed without extra compensation, at whatever time and under whatever circumstances they may occur.
B. The failure of the Engineer to order the use of bracing or sheeting or a better quality, grade or section, or larger sizes of steel or timber, or to order sheeting, bracing, struts, or shoring to be left in place, or the failure to give orders or directions as to the manner or methods of placing or driving sheeting, bracing jacks, wales, rangers, or other members, shall not in any way or to any extent relieve the Contractor of any responsibility concerning the condition of excavation or of any of his obligations under the Contract; nor shall any delay, whether caused by any action or want of action on the part of the Contractor, or by any act of the Owner, or his agents, or employees, resulting in the keeping of an excavation open longer than would otherwise have been necessary, relieve the Contractor from the necessity of properly and adequately protecting the excavation from caving or slipping, nor from any of his obligations under the Contract relating to injury of persons or property, nor entitle him to any claim for extra compensation.

3.15 PROTECTION OF PROPERTY AND STRUCTURES

A. The Contractor shall, at his own expense, sustain in their places, and protect from direct or indirect injury, all pipes, tracks, walls, buildings, and other structures or property in the vicinity of his work, whether above or below the ground, or that may appear in the excavation. He shall at all times have a sufficient quantity of timber and plank, chains, ropes, trench boxes, and other material and equipment, on the ground and shall use them as necessary for sheeting his excavations and for sustaining or supporting any structures that are uncovered, undermined, endangered, threatened or weakened.

B. The Contractor shall take all risks attending the presence of proximity of pipes, poles, tracks, walls, buildings, and other structures and property, of every kind and description, in or over his excavation, or in the vicinity of his work, whether above or below the surface of the ground; and he shall be responsible for all damages and assume all expense for direct or indirect injury, caused by his work, to any of them, or to any person or property by reason of injury to them, whether such structures are not shown on the Drawings.

C. Where necessary, in order to keep one side of the street or roadway free from any obstruction or to keep the material piled alongside the excavation from falling on private property outside the right of way, a safe and suitable fence shall be placed alongside the excavation.

D. In the event of encountering quicksand, subsurface streams or similar dangerous contingencies, or where passing especially heavy building or any structures which by their construction or position might bring a great pressure upon the excavations the right is reserved by the Engineer to direct that such buildings, or structures, shall be underpinned, or supported and protected, or that special sheeting shall be driven in such a manner and to such depth, as may be directed, or that only a short length of
excavation shall be opened at one time; and furthermore, if necessary, that the excavation shall be securely sheeted and braced on all sides, after the manner of a shaft, and that the permanent work shall be constructed in the same manner and the shaft backfilled before another opening is made. Any work done as above directed shall be at the cost and expense of the Contractor.

E. The Engineer reserves the right under such conditions to stop the excavation or any other part of the work, and to require the Contractor to complete the structure and the backfilling up to such a point as the Engineer may direct before proceeding further with the excavation; and the Contractor shall not thereby become entitled to demand or to receive any allowance or compensation, other than an extension of the contract time for as many days as the Engineer may determine that the work was delayed by such stoppage.

3.16 OBSTRUCTION SHOWN ON DRAWINGS

A. Certain information regarding the reputed presence, size, character, and location of existing underground structures, pipes and conduits has been shown on the Contract Drawings. There is no certainty of the accuracy of this information. The location of underground structures shown may be inaccurate and other obstructions not shown may be encountered.

B. The Contractor hereby distinctly agrees that the Owner is not responsible for the correctness or sufficiency of the information given; that in no event is this information to be considered as a part of the Contract; that he shall have no claim for delay or extra compensation on account of incorrectness of information given, or on account of the insufficiency or absence of information regarding obstructions either revealed or not revealed by the Drawings; and that he shall have no claim for relief from an obligation of responsibility under the Contract, in case the location, size or character of any pipe or other underground structure is not as indicated on the Drawings; or in case any pipe or other underground structure is encountered that is not shown on the Drawings.

C. The Contractor is solely and completely responsible for contacting utility providers and locating services to field locate existing utilities 48 hours in advance of his activities. If inadequate locations are made, or if hand-digging of "test holes" is deemed necessary, this shall be accomplished and affected by the Contractor at no additional expense to the Owner.

3.17 REMOVAL OF OBSTRUCTIONS

A. Should the position of any pipe, conduits, pole, or other structures, above or below the ground be such as, in the opinion of the Engineer, to require its removal, realignment, or change due to work to be done under the Contract, the work of
removal, realignment, or change will be done as extra work, or will be done by the Owner of the obstructions, without cost to the Contractor; but the Contractor shall uncover and sustain the structures, at his own expense, before such removal and before and after such realignment or change as constituting part of the Contract; and the Contractor shall not be entitled to any claim for damage or extra compensation on account of the presence of said structure, or on account of any delay in the removal or rearrangement of the same.

B. The Contractor shall, without extra compensation, break through and reconstruct, if necessary, the invert or arch of any sewer, culver, or conduit that may be encountered, if the said structure is in such a position that in the judgment of the Engineer, as not to require its removal, realignment or complete reconstruction.

C. The Contractor shall not interfere with any persons, firms or corporations, or with the Owner in protecting, removing, changing, or replacing their pipes, conduits, poles, or other structures; but he shall suffer said persons, firms, or corporations, or the Owner to take all such measures as they may deem necessary or advisable for the purpose aforesaid, and the Contractor shall thereby be in no way relieved of any of his responsibilities under this Contract. At railway or railroad track crossings or paralleling, any expense to which the Owner of the trackage is put in shoring up tracks, or in maintaining traffic, shall be borne by the Contractor, whether the same is billed directly to him, or the Owner. Should any such bill be unpaid by the Contractor, before final payment under the Contract is made, the Owner shall be empowered to pay said bill and retain the amount thereof, from any monies due, or to become due the Contractor.

D. Except where trees are in rights-of-way, in immediate proximity to the excavation, they shall not be cut down except by authorization of the Engineer and the Contractor shall have no claim for the extra compensation owing to the fact that he may be required to excavate by hand, or tunnel in the vicinity of trees that may be left standing.

3.18 CHANGE OF EXCAVATION LOCATION

A. In case the Engineer shall direct that the location of a trench or other excavation be changed from that shown on the Drawings, on account of the presence of an obstruction, or from other cause, or if a changed location shall be authorized upon the Contractor's request, the Contractor shall not be entitled to extra compensation, or to a claim for damage, provided that the change is made before the excavation is begun. If, however, such change, made at the direction of the Engineer, involves the abandonment of excavation already made, such abandoned excavation, together with the necessary refill, will be classed as miscellaneous excavation. In the event that the excavation is abandoned in favor of a new location, at the Contractor's request, the abandoned excavation and refill shall be at the Contractor's expense.

B. Minor changes in alignment of pipe or other structures to accommodate the actual location of existing facilities shall be considered typical of construction activities and no additional compensation will be made for changes of this nature.
3.19 CLEANUP

A. As the trenches are filled in and the work completed, the Contractor shall immediately and at his own cost and expense remove and dispose of all surplus earth, stone or other material from the work, in such manner and at such point or points, as he may select or provide, subject to the approval of the Engineer; or he may deposit the same, either with or without rehandling, at any point or points on the line of the work covered by the Contract, if so directed by the Engineer; and shall leave all roads, sidewalks and other places free, clear and in good order. In case the Contractor shall fail or neglect to do so, or to make satisfactory progress in doing so within twenty-four (24) hours after the receipt of a written notice from the Engineer, the Owner may remove such surplus material and clear the roadways, sidewalks and other places, and the cost of said work shall be charged to the Contractor and deducted from any monies due or to become due him under the Contract.

B. All surplus earth or other material wasted on public property shall be evenly spread and left in a neat and smooth condition. All removed materials shall become the property of the Owner, if they so desire. If the Owner does not want the removed materials, surplus materials will be removed by the Contractor at no extra cost to the Owner.

C. As soon as the trenches are refilled, all surplus earth, sand or rubbish shall be removed and kept removed to a point not more than two hundred feet (200’) from the head of the open trench, unless otherwise authorized by the Engineer.

3.20 MAINTENANCE OF BACKFILLED TRENCH SURFACES

A. The Contractor shall crown to such height, as directed by the Engineer, the top of all backfilled trench excavations. The Contractor shall also maintain these crowned surfaces to the satisfaction of the Engineer, without additional compensation, from the time of crowning operation to and including a period of eight (8) months beyond date of a Certificate of Completion of the work under this contract.

B. The Contractor shall be responsible for any injury or damage resulting from lack of required trench maintenance during the prescribed maintenance period. If the Contractor does not satisfactorily provide specified maintained surfaces or begin repairs of such surfaces when needed, within twenty-four (24) hours after written notice from the Engineer, such work may be done by the Owner and the cost thereof charged against the Contractor.

END OF SECTION
PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. Scope: In general, the work specified in this section of the specifications shall consist of supplying labor, materials, and plant, and performing all work necessary to lower and control the groundwater levels and hydrostatic pressures to permit all excavations and construction specified under this Contract to be performed in the dry.

B. Examination of Site: The Contractor shall take all steps that he considers necessary to familiarize himself with the site conditions, the ground conditions and the groundwater conditions. It is expressly understood that neither the Owner nor the Engineer will be held responsible for any interpretations or conclusions drawn by the Contractor.

PART 2 - PRODUCT

2.01 METHOD AND EQUIPMENT

A. The Contractor may use any dewatering method he deems feasible so long as it results in working in the dry and in stable soil conditions. It is the intent of these specifications that an adequate dewatering system be installed to lower and control the groundwater in order to permit excavation, construction of the structures, construction of pipelines, and the placement of the fill materials, all to be performed under dry conditions. The dewatering system shall be adequate to pre-drain the water-bearing strata above and below the bottom of the foundations, the drains, the sewers and all other excavations. An adequate weight of fill material shall be in place prior to discontinuing operation of dewatering to prevent buoyancy of the structure.

PART 3 - EXECUTION

3.01 GENERAL

A. The Contractor shall be solely responsible for the arrangement, location and depths of the dewatering system necessary to accomplish the work described under this section of the specifications. The dewatering shall be accomplished in a manner that will reduce the hydrostatic head below any excavation to the extent that the water level and piezometric water levels in the construction area are below the prevailing excavation surface; will prevent the loss of fines, seepage, boils, quick conditions, or softening of the foundation strata; will maintain stability of the sides and bottom of the excavation; and will result in all
B. Disposal of Water: The Contractor shall promptly dispose of all water removed from the excavations in such a manner as will not endanger public health, damage public or private property, or affect adversely any portion of the work under construction or completed by him or any other Contractor. Contractor shall obtain written permission from the Owner of any property involved before digging ditches or constructing water courses for the removal of water.

C. Siltation and Erosion:

1. The Contractor shall take steps and make suitable provisions to minimize siltation and erosion which may result from, or as a result of, his operations during the course of construction of this project.

2. The methods and provisions utilized by the Contractor to minimize siltation and erosion shall be approved by the Engineer and shall be in conformance with current Florida Department of Environmental Protection and St. Johns River Water Management District practices and regulations.

D. Inadequate System: If the dewatering requirements are not satisfied due to inadequacy or failure of the dewatering system, then loosening of the foundation strata, or instability of the slopes, or damage to the foundations or structures may occur. The supply of all labor, materials, and plant, and the performance of all work necessary to carry out additional work for reinstatement of the structures of foundation soil resulting from such inadequacy or failure shall be undertaken by the Contractor to the approval of the Engineer, and at no additional expense to the Owner.

END OF SECTION
SECTION 02200
SITE GRADING

PART 1 - GENERAL

1.01 Work Includes

A. Excavation and embankment necessary for grading the site shall be considered to include that required for roads, walks, culvert installations, and drainage ditches and channels.

PART 2 - EXECUTION

2.01 Preparation

A. After the removal of topsoil, the then existing surface is to be excavated or filled to the elevations and slopes indicated on the Drawings, or as directed by the Engineer. Additional fill, if required, and is not available elsewhere, shall be excavated from borrow areas selected by the Contractor, but subject to the approval of the Engineer. Unless otherwise provided, all borrow pits shall be located entirely outside the limits of the site.

B. On areas where roadway pavement is to be placed, the subgrade therefore shall be no more than 0.10 foot above or below the established grade; in other areas, the finished grade shall be not more than 0.15 foot above or below the established grade.

C. Where rock is encountered at road subgrade or finished grade in areas other than roads, it shall be removed for a depth of six (6) inches below such subgrade or finished grade elevation.

D. Subgrades and shoulders for the access and service roads shall be constructed to the lines and grades indicated, and in conformance with the applicable requirements of the "Standard Specifications" for the Florida State Department of Transportation.

2.02 Embankment

A. On hillsides in which the existing slope is steeper than four to one, the Engineer may require the surface to be plowed to provide binding of the embankment with the original ground. When, in the opinion of the Engineer, existing slopes are excessive, the Engineer may require the original ground to be cut into the steps or berms.

B. All materials removed from classes of excavation, which are determined as suitable by the Engineer, shall be used in the formation of embankments. Excavated material which is not required for embankments shall be disposed of by the Contractor, at his responsibility and expense, outside the limits of the site, unless the Engineer gives
notice of some point of disposal within the site. No material shall be disposed of in any flood channel area.

C. Earth or other friable materials shall be placed in successive horizontal layers of loose material not more than nine (9) inches in depth, spread uniformly by use of graders or other approved devices, and rolled until thoroughly compacted with an approved three (3) wheel power roller weighing not less than ten (10) tons. The Engineer may permit the Contractor to use approved sheep-foot tamping rollers. Embankments at points inaccessible to the roller shall be made in horizontal layers of loose material not exceeding six (6) inches in depth and thoroughly compacted by mechanical tampers.

D. Where rock only is available, it shall be placed in loose layers not exceeding two (2) feet in depth and rolled as provided above. Rock fills shall only be considered as such where the earth or other finer materials is uniformly distributed and is considerably less than sufficient to fill the voids and interstices; otherwise it shall be considered and placed as earth fill. The top layer of rock fills shall not exceed eight (8) inches in depth, and the interstices shall be thoroughly filled with small spall, shale, gravel, or other similar approved material and thoroughly compacted. This top layer of rock shall be kept at least eight (8) inches below the elevation of subgrade for payments, and finished grade elsewhere, with the balance of the fill formed by topsoil or other approved material, as required.

E. No roots, leaves, grass, or any form of vegetation shall be placed or allowed to remain in filled or graded areas.

F. The Contractor shall be responsible for the stability of all embankments and shall replace all sections which, in the opinion of the Engineer, have been damaged or displaced due to carelessness or neglect on the part of the Contractor due to natural causes, such as storms.

G. During grading operations, cuts and fills shall be kept shaped and drained at all times.

END OF SECTION
SECTION 02831
CHAIN LINK FENCING AND GATES

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. This Section includes furnishing and installing the chain link fence as shown on the Drawings and as specified.

1.02 QUALITY ASSURANCE

A. Manufacturer. A company specializing in commercial quality chain link fencing with a minimum of two years experience.

1.03 SUBMITTALS

A. Submit layout.

B. Submit samples if requested by the Engineer.

PART 2 - MATERIALS AND EQUIPMENT

2.01 MATERIALS

A. Fabric. No. 9 gage (0.148-inch) steel wires, 2-inch mesh, with top and bottom selvages twisted and barbed. Furnish one-piece fabric width.

1. Select fabric finish to be used for this product
2. Coordinate with tension wire and barbed wire

B. Fabric finish shall be galvanized conforming to ASTM A392, Class II, galvanized after weaving, with a minimum weight of 2.0 oz. per square foot of wire surface.

C. Framework. Galvanized steel, ASTM A120, with not less than 1.8 oz. zinc per sq. ft.

D. Hardware and Accessories. Galvanized, ASTM A153, with zinc weights as per Table 1.

2.02 FRAMING AND ACCESSORIES

A. End, Corner and Pull Posts. Minimum sizes and weights as follows:

1. Up to 6-foot fabric height, 2.875-inch OD pipe, 5.79 lbs. per lin. ft.

B. Line Posts. Space 10-foot o.c. maximum, unless otherwise shown, of following
minimum sizes and weights.

1. Up to 6-foot fabric height, 2.375-inch OD steel pipe. 3.65 lbs. per lin. ft.

C. Gate Posts. Furnish posts for supporting single gate leaf for nominal gate widths as follows:

1. Up to 6-feet in width, 2.875-inch OD steel pipe.
2. From 6-feet up to 13-feet in width, 4.00-inch OD steel pipe.
3. From 13-feet up to 18-feet in width, 6.625-inch OD steel pipe.
4. Over 18-feet in width, 8.625-inch OD steel pipe.

D. Top Rail. 1-5/8-inch OD pipe, manufacturer's longest lengths, with expansion type couplings, approximately 6-inches long, for each joint. Provide fittings for attaching top rail securely to each gate, corner, pull, and end post.

E. Post Brace Assembly. Manufacturer's standard adjustable brace at gate posts and at both sides of corner and pull posts, with horizontal brace located at mid-height of fabric.

1. Use 1-5/8-inch OD pipe for horizontal brace and 3/8-inch diameter adjustable diagonal truss rod.

F. Post Tops. Weathertight closure cap (for tubular posts,) one cap for each post.

1. Furnish caps with openings to permit passage of top rail and arms to accept barbed wire. Caps shall be set screw retained.

G. Stretcher Bars. One piece lengths equal to full height of fabric, galvanized, with minimum cross-section of 3/16-inch x 3/4-inch. Provide one stretcher bar for each gate and end post, and two for each corner and pull post, except where fabric is integrally woven into post.

H. Stretcher Bar Bands. Space not over 15-inches o.c., to secure stretcher bars to end, corner, pull, and gate posts.

I. Tension Wire. Single strand spring coil steel wire, 6-gage, [galvanized.] [aluminum coated.]

J. Extension Arms. Cast steel to accommodate 3 strands of barbed wire, sloped 45 degrees. Provide single, double or vertical arm as shown on the drawings.

K. Barbed Wire. Three strands of 12-1/2 gauge, twisted [galvanized] [aluminum coated] wires with 14 gauge, four point barbs at 4-1/2 or 5-1/2 inches on center (including gate).

L. Wire Ties. For tying fabric to line posts, use wire ties spaced 12-inch o.c. For tying fabric to rails and braces, use wire ties spaced 24-inch o.c. For tying fabric to tension
wire, use hog rings spaced 24-inch o.c. Manufacturer's standard procedure will be accepted if of equal strength and durability.

M. Gates. Gates shall be swing [or rolling] as shown on the drawings and shall be complete with latches, stops, keepers, hinges [rollers] and when shown, provision for 3-strands of barbed wire above the fabric.

N. Gate Frames. Gate frames shall be constructed of tubular members and, shall be constructed in a manner such as to provide a rigid frame and ample strength and gate shall be free from sag and twist. Where a barbed wire top is specified, the end members of gate frames shall be extended approximately 1 foot above the top member and arranged for attaching three uniformly spaced strands of barbed wire and furnished with bands or other suitable method for securely attaching the wire.

O. Latches, [Padlocks,] Stops and Keepers. Provide latches, [padlocks], stops and keepers for all gates. Latches shall have the plunger bar arranged to engage the gate stop, except that for single gates for openings less than 10-feet wide a forked latch may be provided. Latches shall be arranged for padlocking. [Padlocks shall be Type ED, brass, with 2 keys, conforming to Fed. Spec. FF-P-101.] Center stops shall consist of a device arranged to be set in concrete and to engage the plunger of the bar latch of double gates. No stop is required for single gates. Keepers shall consist of a mechanical device for securing the free end of the gate when in the full open position.

P. Rolling Gate. Provide a rolling gate where shown on the drawings. Furnish horizontal and vertical members to ensure proper gate operation and for attachment of fabric, hardware and accessories. Fabricate perimeter frames of tubular members to form a gate 6-feet high and up to 36-feet wide as follows:

1. Steel Pipe: 2-inch OD.

2. Assemble gate frames by welding or with special fittings and rivets for rigid connections. Use same fabric and gage as for fence. Install fabric with stretcher bars at vertical edges. Bars may also be used at top and bottom edges. Attach hardware to provide security against removal or breakage.

3. Where manufacturer's design requires, provide diagonal cross-bracing to ensure frame rigidity without sag or twist.

4. Provide rubber wheels for ground contact and metal wheels to roll on pipe support.
PART 3 - EXECUTION

3.01 INSPECTION

A. Installer must examine the condition under which the fence and gates are to be installed and notify the Contractor in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to the Installer.

3.02 INSTALLATION

A. Do not begin installation and erection before final grading is completed, unless otherwise permitted.

B. Excavation. Drill holes for posts of diameters and spacings shown, in firm, undisturbed or compacted soil.

C. Setting Posts. Center and align posts in concrete with clearance as shown on the drawings. Place concrete around posts and vibrate or tamp for consolidation. Check each post for vertical and top alignment, and hold in position during placement and finishing operations.

D. Top Rails. Run rail continuously through post caps, bending to radius for curved runs. Provide expansion couplings as recommended by fencing manufacturer.

E. Center Rails. Provide center rails only where shown. Install in one piece between posts and flush with post on fabric side, using special offset fittings where necessary.

F. Brace Assemblies. Install braces so posts are plumb when diagonal rod is under proper tension.

G. Fabric. Leave approximately 2-inches between finish grade and bottom selvage, unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Install fabric on security side of fence, and anchor to framework so that fabric remains in tension after pulling force is released.

H. Stretcher Bars. Thread through or clamp to fabric 4-inches o.c., and secure to posts with metal bands spaced 15-inches o.c.

I. Tie Wires. Use U-shaped wire, conforming to diameter of pipe to which attached, clasping pipe and fabric firmly with ends twisted at least two full turns. Bend wire to minimize hazard to persons or clothing.

J. Fasteners. Install nuts for tension bands and hardware bolts on side of fence opposite fabric side. Peen ends of bolts or score thread to prevent removal of nuts.
K. Gates. Install gates plumb, level, and secure for full opening without interference. Install ground-set items in concrete for anchorage as recommended by the fence manufacturer. Adjust hardware for smooth operation and lubricate where necessary.

3.03 TOUCH-UP PAINT

A. Coat all exposed surfaces resulting from field cuts, welding and other installation activities.

B. Touch up paint shall be inorganic zinc rich coating. Zinc-Lock 351 from Porter Paint Company is an acceptable product. Equivalent products may be submitted.

END OF SECTION
SECTION 02900A
GRASSING, MULCHING AND SODDING

PART I - GENERAL

1.01 WORK INCLUDED

A. The work specified in this section consists of grassing, or of grassing and mulching, on slopes, shoulders and other areas. The work of grassing shall include seeding and fertilizing; also watering as required. Any of the items of work covered by this section may be eliminated from the contract, at the discretion of the Engineer. Sodding is included herewith and shall conform to the lines and grades as shown on the plans.

PART II - MATERIALS AND EQUIPMENT

2.01 MATERIALS AND EQUIPMENT

A. The materials used for the work in this section shall conform to the requirements hereinafter specified.

2.02 SOD

A. Sod shall be well matted with roots. St. Augustine shall be used in residential areas. Bahia shall be used in the right-of-way areas, not covered by St. Augustine grass.

B. The sod shall be taken up in commercial-size rectangles, preferably 12-inch by 12-inch, except where 6-inch strip sodding is called for.

C. The sod shall be sufficiently thick to secure a dense stand of live grass. The sod shall be live, fresh and uninjured, at the time of planting. It shall be planted as soon as possible after being dug and shall be shaded and kept moist from the time it is dug until it is planted. The sod shall be approved by the Engineer before placing.

D. Source Requirements for Sod and Mulch. No mulch material or sod shall be used which is not certified as being free of the imported fire ant, and before any mulch or sod is brought to the project, the Contractor will be required to furnish the Engineer a written certification and clearance, from pest control officials of either the State or the Federal Department of Agriculture, verifying that the materials are being obtained from an area outside of the zone of quarantine of the imported fire ant, or that they are free of the imported fire ant.

E. Limits of sod to include all banks.
2.03 WATER

A. The water used in the grassing operations may be obtained from the reclaimed water system.

B. The water shall be free of excess and harmful chemicals, acids, alkalis, or any substance which might be harmful to plant growth or obnoxious to traffic.

C. Salt water shall not be used.

2.04 EQUIPMENT

A. Fertilizer Spreader

1. The device for spreading dry fertilizer or for spraying liquid fertilizer shall meet the approval of the Engineer.

B. Seed Spreader.

1. The seed spreader shall be an approved mechanical head spreader or other approved type of spreader and may be integral with the cultipacker roller equipment specified below.

C. Equipment for Cutting Mulch into Soil.

1. The mulching equipment shall be a rotovator, or other equipment determined by the Engineer to be equally suitable for cutting the specified materials uniformly into the soil and to the required controlled depth.

2. Harrows will not be allowed.

D. Rollers

1. A cultipacker, traffic roller, or other roller approved by the Engineer, will be required for rolling the grassed and mulched areas.

E. Water-Metering Devices

1. The vehicle used for applying the water to the grassed areas shall be equipped with an approved metering device installed at such point on the vehicle as to measure the water at the time of its being applied to the grassed areas.
PART III - EXECUTION

3.01 TIME OF BEGINNING OPERATIONS

A. Whenever a suitable length of roadway is completed and ready for planting the Contractor shall, if directed by the Engineer, proceed at once with the planting of the available shoulder or embankment areas.

3.02 WEATHER AND SOIL LIMITATIONS

A. Fertilizing, seeding or mulching operations will not be permitted when wind velocities exceed 15 miles per hour.

B. Seed shall be sowed only when the soil is moist and in proper condition to induce growth.

3.03 SOIL MANIPULATION

A. All soil manipulation shall be done at right angles to the direction of slope.

3.04 WATERING

A. The soil shall be maintained in a moist condition for a period of at least two weeks after the planting.

3.05 APPLYING AND MIXING FERTILIZER

A. Rate of Application

1. At the Contractor's option either dry or liquid commercial grade fertilizer may be used.

2. The rate of application for dry fertilizer shall be 800 to 1000 pounds per acre, with application in the upper range for sandy soils in the lower range for loamy soils. The exact rate will be set by the Engineer.

3. Liquid fertilizer shall be applied at an equivalent rate which will provide the same amount of plant food as required for dry fertilizer (or at approximately 74 to 92 gallons per acre).

B. Application

1. The fertilizer shall be spread or sprayed uniformly over the area to be grassed by use of the approved distributing device, except that on steep slopes or other areas where machine-spreading may not be practicable, spreading may be done by hand or by hose if the Engineer so directs.
2. Immediately after dry fertilizer is spread, it shall be harrowed in and mixed with the soil to a depth of approximately four inches.

3. When liquid fertilizer is sprayed, the soil, if dry, shall be moistened by sprinkling before the liquid fertilizer is applied not later than seven days after the seed is in place.

3.06 MULCHING

A. When Dry Mulch is Used

1. When mulching is called for, approximately two inches, loose thickness, of the straw or hay material shall then be applied uniformly over the grassing area, and the mulch material cut into the soil with the equipment specified, so as to produce a loose mulch thickness of three to four inches.

2. Care shall be exercised so that the materials are not cut too deeply into the soil.

B. When Green Mulch is Used

1. When green mulch is used, the green mulch shall be incorporated into the soil not later than two days after being cut, and not artificial watering shall be done before the mulch is applied.

2. It shall be spread in a layer of approximately two inches loose thickness, and cut into the soil with the equipment specified.

3. The material shall not be cut too deeply into the soil.

3.07 SEEDING

A. Soon after the mulch material has been cut into the soil, and while the soil is still loose and moist, the seed shall be scattered uniformly over the grassing area.

The rate of spread for the seed shall be as follows:

1. Where mulching is not called for, or where dry mulch is used, the rate shall be 60 pounds per acre. In the period from March 15 to October 15 the seed mixture shall be 30 pounds of Bahia and 30 pounds of Bermuda. In the remainder of the year, the mixture shall be 20 pounds each of Bahia, Bermuda and rye seed.

2. When green mulch is used, the required rate of spread shall be reduced to 45 pounds per acre, because of the faster growing rate of the green mulch as compared with that of the seeds. The seed mixture shall be 22-1/2 pounds of Bahia and 22-1/2 pound of Bermuda, except that in the period October 15 to
March 15 the mixture shall be 15 pounds each of Bahia, Bermuda and rye grass seed.

3. Seeding may be done in conjunction with the rolling if the equipment used is designed for that purpose.

4. Rolling. Immediately after completion of the seeding, the entire grassed or mulched area shall be rolled thoroughly with the equipment specified. At least two trips over the entire area will be required.

3.08 SODDING

A. Wherever sodding is indicated on the plans, it shall include all of the requirements of this section except "Mulching".

3.09 MAINTENANCE

A. The Contractor shall be responsible for keeping the ground moist by watering until an acceptable stand of grass is grown. He will also be required to repair at his own expense any damage due to washouts, erosion or other causes which might occur prior to final acceptance of this work.

END OF SECTION
PART 1 - GENERAL

1.01 WORK INCLUDED

A. The work included under this section consists of furnishing all materials, forms, transportation and equipment, and performing all necessary labor to do all the plain and reinforced concrete work shown on the Drawings, or incidental to the proper execution of the work, or as herein specified.

B. Composition: Concrete shall be composed of cement, fine aggregate, coarse aggregate, and water so proportioned and mixed as to produce a plastic workable mixture in accordance with all requirements under this section suitable to the specific conditions of placement.

1.02 SUBMITTALS

A. All materials specified shall be certified by the producer or manufacturer that the furnished material meets the specific requirements of the specifications. Concrete mix designs shall be submitted for approval prior to placement.

1.03 CODES AND STANDARDS

A. ACI 301 "Specifications for Structural Concrete for Buildings", ACI 318" Building Code Requirements for Structural Concrete", ACI 347 "Recommended Practice for Concrete Formwork"; ACI 304 "Recommended Practice for Measuring, Mixing, Transporting, and Placing Concrete"; comply with applicable provisions except as otherwise indicated.

1.04 TESTING

A. Air content shall be in accordance with American Society for Testing Materials Standard Methods C 173, one for each set of compressive strength specimens.

B. Sampling of freshly mixed concrete shall be in accordance with ASTM C172.

C. Slump: ASTM C-143

D. Test results will be reported in writing to Engineer, Contractor, Owner and Concrete producer on same day tests are made.

E. Laboratory Reports: Submit 2 copies of laboratory test or evaluation reports for concrete materials and mix designs.
PART 2 - MATERIALS AND EQUIPMENT

2.01 PORTLAND CEMENT

A. Shall comply with the standard specifications for Portland Cement, A.S.T.M. designation C-150, Type II, or Type III (high-early), where indicated on drawings.

2.02 CONCRETE AGGREGATE

A. Shall conform to standard specifications for concrete aggregate, A.S.T.M. Designation C-33 or to ASTM C-330. Maximum size of aggregate shall not exceed one-fifth of the narrowest dimension between reinforcing bars.

B. Fine Aggregate - Fine aggregate shall be clean, hard, strong, durable, uncoated particles of natural sand known as Lake Wales, Interlachen, or approved equal. The source, composition, quality and gradation of the fine aggregate shall be subject aid the approval of the Engineer. Samples of the sand shall be furnished, together with certified copies of the gradation and analysis from the recognized testing laboratory.

1. The weight of extraneous or deleterious substances shall not exceed the following percentages:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss by Decantation</td>
<td>3%</td>
</tr>
<tr>
<td>Shale</td>
<td>1%</td>
</tr>
<tr>
<td>Clay Lumps</td>
<td>1%</td>
</tr>
<tr>
<td>Coal and Lignite</td>
<td>1%</td>
</tr>
</tbody>
</table>

2. The fine aggregate shall be reasonable well graded from coarse to fine and when tested by means of laboratory sieves shall meet the following requirements in percent of total weight:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4</td>
<td>0 - 5</td>
</tr>
<tr>
<td>No. 10</td>
<td>3 - 30</td>
</tr>
<tr>
<td>No. 30</td>
<td>30 - 70</td>
</tr>
<tr>
<td>No. 50</td>
<td>65 - 95</td>
</tr>
<tr>
<td>No. 100</td>
<td>95 - 100</td>
</tr>
</tbody>
</table>

C. Deficiencies in the percentages of the fine aggregates passing the No. 50 and No. 100 Sieves may be remedied by the addition of pozzolanic or cementitious materials excepting Portland cement. Such materials must meet the approval of the Engineer.
D. Coarse Aggregate.

1. Coarse aggregate shall consist of hard, tough, durable components free from adherent coatings and vegetable matter, and shall not contain soft, friable, thin or elongated particles in quantities considered deleterious by the Engineer. Coarse aggregate shall be properly graded from fine to coarse to produce concrete of desired strength, density, and workability. The source, composition, quality and gradation of the coarse aggregate shall be subject to the approval of the Engineers. Samples of the coarse aggregate shall be furnished together with certified copies of the gradation and analysis from a recognized testing laboratory.

2. All coarse aggregate shall be washed and shall be free from disintegrated pieces, salt, alkali, vegetable matter and adherent coatings. The total percentage of all deleterious substances shall not exceed 5 percent by weight. The substances designated shall not be present in excess of the following amounts.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss by Decantation</td>
<td>1%</td>
</tr>
<tr>
<td>Clay Lumps or Other Soluble Materials</td>
<td>3%</td>
</tr>
<tr>
<td>Soft Fragments</td>
<td>5%</td>
</tr>
</tbody>
</table>

3. Where the cover over reinforcing is 2 inches or more, the maximum size of aggregate shall be 12 inches. Where the cover over reinforcing is less than 2 inches, the maximum size of aggregate shall be 3/4 inch. The maximum size of aggregate shall not exceed one-fifth of the narrowest dimension between forms nor three-fourths of the minimum clear spacing between reinforcing bars. The grading of the coarse aggregate in the concrete shall be within the following limits.

<table>
<thead>
<tr>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Size Square Mesh Screen</td>
</tr>
<tr>
<td>2 Maximum Size Square Mesh Screen</td>
</tr>
<tr>
<td>No. 4 Sieve</td>
</tr>
</tbody>
</table>

2.03 WATER

A. Water shall be clean and free from oil, acids, alkalis, organic materials or other injurious substances.

2.04 REINFORCEMENT

A. Reinforcing Bars: ASTM A615, Grade 60, deformed bars of USA manufacture.

B. Welded Wire Fabric: ASTM A185, gauges, spacing and dimensions as indicated.
C. Metal Bar Supports: CRSI MSP-1, Chapter 3, Class 2, Type B, Stainless Steel Protected Bar Supports, or otherwise approved by the Engineer. Use concrete supports for reinforcement in concrete placed on grade.

D. Tie Wire: 16 gauge minimum, black, soft annealed.

E. Coupler Splice Devices: Cadweld tensions couplers, capable of developing the ultimate strength of the bar as manufactured by Erico Products, Incorporated, Solon, Ohio, or equal.

F. Epoxy coated or FRP rebar shall be used for all marine applications.

2.05 FORM WORK

A. Lumber: Douglas Fir or Larch, No. 2 grade, seasoned and surfaced on four sides.

B. Plywood: Plyform, Class 1, BB-Exterior type, mill oiled and edge sealed, with thickness not less than 3/4 inch.

C. Medium Density Overlay (MDO) Plywood Forms: PS-1, B-B High Density Concrete Form Overlay, Class I, unoiled.

1. Butt form panels, make contact surface fully flush and seal butting holes with sponge form tape. Chamfer edges of beams and ceilings.

2. Where MDO plywood is used to form beams, do not use MDO plywood that has been patched or damaged.

D. Drip Forms: Varnished ponderosa pine or equally rigid non-staining plastic, 2 inch wide on each leg.

E. Steel Forms. Uncoated steel, 3/16 inch minimum thickness, fabricated to close tolerances, protected only by the specified release agent, braced so as not to bend, dent, or dimple under wet concrete load, vibrator impact, and tool impact. Maintain steel form in rust-free condition by use of steel wood and light grinding, followed by coats of specified release agent. Use forms that can be adjusted into true alignment without stops or ridges.

F. Glass Fiber Reinforced Plastic (FRP) Forms: Smooth coated forms, braced so as not to bend, dent or dimple under wet concrete loads, vibrator impact and tool impact, and at least 0.11 inch thick. Design forms for external bracing at piers and columns, without use of form ties.

G. Plugged Cone Form Ties: Rod type, with ends or end fasteners which can be removed without spalling the concrete and which leave a hole equal in depth to the
required reinforcement clearance. Form ties shall be of a design in which the hole left by the removed end or end fastener is easily filled to match the surface of the hardened concrete. Provide removable cones 13 inches in diameter by 12 inches deep. Provide preformed mortar plugs to match the color of the concrete, recessed 3 inch, adhered with an approved two part epoxy.

H. Weep Hole Forms: PVC polyethylene, or ABS pipe, matching color of the concrete, 4 inch inside diameter, with outlet projecting 12 inches form wall and cutoff in a plane parallel to it.

I. Circular and Elliptical Column Forms: Fabricate of two pieces, clamped watertight using gaskets and without horizontal joints. Install horizontal construction joints only where indicated or as directed by the Engineer.

J. Beam Forms: Provide in one length without form joints and suitable for cambering up to 1/160 of span without distortion of profile or opening of seams.

K. Forms of Hammerhead Pier Caps: Provide in one length with adjustable soffits, bulkheads and screens as necessary to accommodate different hammerhead beam configurations. Provide no construction joints in hammerhead pier caps. Where three or fewer identical hammerhead pier caps occur within a line section, steel braced HDO plywood forms may be substituted for steel forms if:

1. Working drawings of formwork are submitted.
2. Internal form ties are regularly spaced no less than 48 inches each way, and are made watertight.
3. Form ties have removable cones, which are filled to match concrete.
4. Joints in panels are fully watertight.
5. The resulting surface matches the appearance of steel formed hammerhead caps, with no visible discoloration due to form leakage.

L. Styrofoam Board: Expanded polystyrene extruded into board form, closed cell, moisture resistant, capable of maintaining indicated clear space between concrete structures.

M. Control Joint Filler: Use epoxy joint filler equal to BurkEpoxy Joint Filler to fill voids left by saw cuts and to resist against spalling caused by vehicle traffic in concrete slabs.

N. Inserts: Galvanized cast steel or galvanized welded steel, complete with anchors to concrete and fittings such as bolts, wedges and straps. Provide hanger inserts spaced to match grid of suspended ceilings.

O. Shoring: As designed and executed by Contractor to support all loads.
P. Chamfer Strips: Polyvinyl strips designed to be nailed in the forms to provide a 3/4 inch chamfer at exposed edges of concrete members.

Q. Form Release Agent: A blend of natural and synthetic chemicals that employs a chemical reaction to provide quick, easy and clean release of concrete from forms, and equal to Eucoslip, by the Euclid Chemical Company, or Release #1, by The Burke Company. Use a non-staining release agent that leaves the concrete with a paintable surface.

2.06 ADMIXTURES

A. Air Entraining Admixture: ASTM C260.

B. Water Reducing and Retarding Admixture:

1. Concrete Without Superplasticizer:

 b. Water Reducing and Retarding Admixtures: ASTM C494, Type D, equal to Eucon Retarder-75 by the Euclid Company, Pozzolith 100 XR by Master Builders, Plastiment by Sika Chemical Corporation, and containing no calcium chloride.

 c. Accelerating Admixtures: ASTM C494, Type C or E, equal to Accelguard 80 by the Euclid Company, Darex Set Accelerator by W.R. Grace, and containing no calcium chloride.

2. Concrete with Superplasticizer:

 a. Water Reducing, High Range Admixtures: ASTM C494, Type F or G, equal to Eucon 37 by the Euclid Company, Rheobild 716 by Master Builders, Daracem 100 by W.R. Grace, Sikament by Sika Chemical Corporation, and consisting of a second generation admixture, free of chlorides and alkalis (except for those attributable to water) composed of a synthesized sulfonated complex polymer, enabling the concrete to maintain its rehophlastic state in excess of two hours if necessary.

 b. Manufacturer's Job Site Representation: Provide the services of a competent field service representative from the manufacturer of each of the admixtures selected for use to provide at the job site advice and consultation on the use of the admixture materials, including the effect on the concrete in place, including recommending maximum
discharge time for superplasticizer method and procedure to induce superplasticizer into mixer, quantities of admixtures to be used if variations are required because of temperature/humidity, wind or other environmental considerations, and to be available on short call at any time requested by the Owner, Contractor, or concrete producer.

3. Concrete used in Marine Applications:
 a. Micro Silica admixtures shall be used for concrete installed in marine and coastal applications. Concrete designs shall met the appropriate requirements of EN206-1, BS 8500 and BS 5075. Contractor shall provide plant certification for all mix designs used in marine and coastal applications.

2.07 GROUT

A. Nonshrink, Nonmetallic Grout: The Burke Company's Non-Ferrous, Non-Shrink Grout, Sauereisen F-100 Level Fill, Master Builders Masterflow 713, Euclid NS Grout, or equal pre-mixed type.

B. Nonshrink Metallic Grout: The Burke Company's Metallic Spec Grout, Master Builders Embeco 636 Grout pre-mixed type, or equal.

C. Epoxy Grout: Sikadur 42 Grout-Pak, or equal, for grouting sleeves for anchor bolts, etc.

D. Clarifier Basin Grout: Class B concrete of coarse aggregate shall pass the 3/4 inch sieve.

2.08 MEMBRANE CURING COMPOUND.

A. Membrane curing compound shall be wax-free, pigmented, 100 percent resin base compound such as A.C. Horn's "Horncure 30 C", Hunt Process Corporation; Southern's "All-Resin", or equal.

2.09 BONDING AGENT.

A. Bonding agent shall be Colma Fix, as manufactured by Sika Chemical Corporation, of Passaic, New Jersey or equal. To be considered equal, the material must be a two-component epoxy-polysulphide resin system, and it must have a demonstrated record of strong adhesion to both wet and dry concrete in either the hardened or the plastic state. It must also be of equal strength.

2.10 ACCESSORIES

A. Precast Concrete Block Supports for Reinforcing Bars: Comply with ACI 315. Provide blocks with No. 4 dowels bent 90° to support top bars.
B. Membrane: 6 mil polyethylene film.

C. Water Stops: Polyvinyl chloride meeting all requirements of U.S. Army Corps of Engineer's Specification CRD-C-572 and equal to Burke Water Stops as manufactured by The Burke Company. Provide flat dumbbell type and center bulb type, 9 inches x 3/8 inch at wall thickness of 12 inches or greater, and 6 inches x 3/8 inches at wall thickness less than 12 inches. Provide 6 inch split-ribbed with center bulb type at connections of new concrete structures with existing concrete. Provide water stops as indicated on the Drawings.

D. Preformed Expansion Joint Filler:
 1. Bituminous type conforming to the requirements of ASTM D994.
 2. Nonextruding type, self expanding cork, 3/4 inch thick or as otherwise shown on the Drawings, conforming to the requirements of ASTM D1752, Type III, and compatible with the specified joint sealant compound.

F. Tongue and Groove Joint Forms: 24 gauge steel forms complete with steel stakes and splice plates, designed for joints not to receive a poured seal, and equal to Burke Keyed Kold Joint as manufactured by The Burke Company.

G. Inserts: Galvanized steel to fit the proposed hanger or support.

H. Mortar for Repair of Concrete: Same materials as used for concrete, except omit coarse aggregate and use not more than one part cement to two and on-half parts sand by damp loose volume. Use no more mixing water than is necessary for handling and placing.

I. Burlap Mats: Conform to AASHTO Specification M182.

J. Epoxy Bonding Agent: Euco #452, BurkEpoxy MV, Sikadur Hi Mod, Concreseive 1001-LPL, or equal.

2.11 CONDUITS AND PIPES EMBEDDED IN CONCRETE
A. Conduits, pipes and sleeves of any material not harmful to concrete shall be permitted to be embedded in concrete with approval of the engineer, provided they are not considered to replace structurally the displaced concrete.

B. Conduits and pipes of aluminum shall not be embedded in structural concrete unless effectively coated or covered to prevent electrolytic action between aluminum and steel.

C. Conduits and pipes, with their fittings, embedded within a column shall not displace more than 4% of the area of cross section on which strength is calculated or which is required for fire protections.

D. Conduits, pipes, sleeves passing through a slab, wall or beam shall not impair significantly the strength of the construction.

E. Except when plans for conduits and pipes are approved by the engineer, conduits and pipes embedded within a slab, wall, or beam shall satisfy the following:
 1. They shall not be larger in outside dimension than one-third overall thickness of slab, wall, or beam in which they are embedded.
 2. They shall not be spaced closer than three diameters or widths on center.

2.12 PIPES CONTAINING LIQUID, GAS, OR VAPOR

A. Pipes that will contain liquid, gas or vapor may be embedded in structural concrete under the following conditions:
 1. Pipes and fittings shall be designed to resist effects of the material, pressure, and temperature to which they will be subjected.
 2. No liquid, gas, or vapor, except water not exceeding 90°F (32°C) nor 50 psi (345 kPa) pressure, shall be placed in the pipes until the concrete has attained its design strength.
 3. Concrete cover for pipes, conduits and fittings shall be not less than 12 inches (38 mm) for concrete exposed to earth or weather or in contact with ground.
 4. Reinforcement with an area of not less than 0.002 times area of concrete section shall be provided normal to piping.
 5. Piping and conduit shall be so fabricated and installed that cutting, bending or displacement of reinforced from its proper location will not be required.

PART 3 - EXECUTION
3.01 PROPORTIONING

A. The proportions of aggregate to cement shall be such as to produce a thoroughly plastic mixture which will work readily into the corners and angles of the forms and around the reinforcement but without permitting the materials to segregate or excess free water to collect on the surface. The percentage of sand shall not be less than thirty (30) nor more than fifty (50) percent of the total weight of the aggregate.

B. The total content, including the surface water contained in the aggregate, shall not exceed 5.7 gallons per sack of cement. The slump shall not exceed four (4) inches. Air-entraining admixture shall be Darex AEA as manufactured by the Dewey and Almy Chemical Company.

C. The amount of air entrained in the freshly mixed concrete shall not be less than three (3) percent nor more than six (6) percent. The minimum cement content in sacks per cubic yard of concrete shall not be less than six (6) sacks per cubic yard for Class "A" concrete.

1. Class "A" concrete for all structures shall have minimum compressive strength of 4000 psi at 28 days.

2. Class "B" concrete for sidewalks shall have minimum compressive strength of 3000 psi at 28 days.

3. All concrete shall be Class "A" unless otherwise shown on the drawings.

3.02 MIXING AND PLACING

A. Concrete shall be mixed, conveyed and deposited in accordance with the "A.C.I. Building Code" (A.C.I. 318).

B. Prior to placing any concrete, the Contractor shall submit for the Engineer's approval a design mix, calculated by a recognized testing laboratory, and using the approved aggregates to produce a workable mix of the desired strength, together with certified copies of 7 days and 28 day tests of cylinders taken from concrete made according to the design mix. The mixes shall be designed to secure concrete having a minimum compressive strength at age 28 days.

C. Ready-mixed concrete delivered shall be accompanied by delivery tickets showing the following:

1. Date and time leaving plant Additives (if any)
2. Type of cement and weight Site arrival time
3. Quantity of water and time added Site leaving time
D. Concrete.

1. Ready-mixed concrete shall be used. All mixing requirements specified herein shall be enforced, and the Owner's laboratory representative and the Engineer shall have free access to the mixing plant at all times.

2. Except for materials and/or procedures otherwise specified herein, ready-mixed concrete shall be mixed and delivered in accordance with the requirements of ASTM C 94.

3. No water shall be added to the concrete after it leaves the plant except where part of the design water was purposely omitted at the plant, and then only as approved by the Engineer.

E. Mixer Speed.

1. Neither the speed of any mixer nor the quantity of material loaded into any mixer shall exceed the recommendations of the manufacturer.

2. Excessive over-mixing, required additions of water to preserve the required consistency, shall be cause for rejection of the batch.

3. Concrete shall not remain in a transit mixer or agitator truck more than 90 minutes after the water has been introduced, and not for more than 45 minutes if any approved retarding agent is not used.

4. Minimum mixing time shall be 50 revolutions of drum at rated speed.

F. Measurement.

1. Equipment necessary to determine and control the actual amounts of all materials entering the concrete shall be provided by the concrete manufacturer.

2. All materials shall be measured by weight, except that water may be measured by volume calculated at 8-1/3 pounds per gallon. One bag of cement will be considered as 94 pounds in weight.

G. Mixes.

1. Mix Design: Conform to ACI 318, Section 4.3. Submit data on consecutive tests and standard deviation.

2. Maximum Water-Cement Ratio:

 .37 (lbs/lb) - Concrete with superplasticizer
 .38 (lbs/lb) – Concrete in Marine Environments
 .45 (lbs/lb) - Class A concrete without superplasticizer
.55 (lbs/lb) - Class B concrete without superplasticizer
.65 (lbs/lb) - Class C concrete without superplasticizer

3. Air Content: 5 percent plus or minus 1.5 percent (Class A and B).

4. Slump: 4 inches plus or minus 1 inch for Class A and B without superplasticizer.
 7 inches plus or minus 1 inch for Class A and B with superplasticizer.
 8 inches plus or minus 1 inch for tremie concrete or as specified by details.

H. Placing Concrete.

1. All concrete shall be placed in clean, damp forms that are not hot to the touch.

2. To prevent segregation, concrete shall be deposited as nearly as practicable in final position and not allowed to drop freely more than necessary and in no case more than five feet, except in an approved funnel or tremie. All concrete shall be placed during daylight unless otherwise authorized at least four hours in advance. Where the reinforcing steel above the top of the concrete being placed becomes coated with laitance or partially set-up concrete, all such concrete shall be removed from the reinforcing steel prior to placing concrete around the bars.

3. Concrete shall be packed carefully and tightly around pipe and other items to secure maximum adhesion.

4. Concrete shall be placed in layers not over 12 inches deep before compacting. Concrete shall be compacted by internal vibrating equipment supplemented by spading and hand-rodding between reinforcing steel and form to eliminate air bubbles and honeycomb. Vibrators shall not be used to move the concrete laterally inside the forms. Duration of vibration shall be limited to the time necessary to provide satisfactory consolidation without causing segregation, not less than five and not more than 15 seconds per square foot of exposed top surface. The vibrator shall be constantly relocated and shall be placed in each specific spot only once for each layer. The Contractor shall take steps to assure that sufficient personnel are available to devote full time to operating vibrator, spading and rodding.

5. Wall concrete shall be placed in layers as indicated above, with the first lift preceded by a 1-inch minimum layer of 1:2-1/2 cement-sand grout, with a 6-inch to 8-inch slump, placed on existing concrete not more than 20 minutes before concrete placement. The surface of previously placed hardened concrete shall be clean and wet before grouting, or shall be treated with a bonding agent as required. Puddles of water in horizontal recessed keys shall be avoided by the use of drain recesses to outside edge of concrete. Concrete
in walls and deep beams shall be placed in lifts not to exceed three layers at 12 inches each for the full length of the pour before proceeding higher. The placing of concrete shall not be delayed more than 20 minutes between layers or lifts.

6. Slab forms shall be thoroughly cleaned after placing wall concrete below. Concrete in beams or walls shall be placed to bottom of floor slab. After concrete in walls below floor slab has been in place for approximately 30 minutes, the concrete for the floor slab and upper portion of the beam shall be placed and vibrated.

7. When concrete is conveyed by chutes, the equipment shall be of proper size and design to insure a continuous flow in the chute. The chutes shall be metal or metal lined, and the different portions shall have approximately the same slope. The slope shall not be less than one vertical to three horizontal or more than one vertical to two horizontal, and there shall be provision for a baffle at the discharge end of the chute to prevent segregation. If the vertical distance between the discharge end of the chute and the surface of the concrete is more than five feet, a spout shall be used. The lower end of the spout shall be kept as near the surface of the deposit as is practicable. All chutes and spouts shall be thoroughly cleaned before and after each run. All debris and water shall be discharged outside the forms.

3.03 CURING AND PROTECTION

A. Curing:

1. Immediately after surface defects have been repaired, apply a spray coat of curing compound to all exposed surfaces, including slabs, walls, beams and columns in accordance with the manufacturer's recommendations. Protect exposed steel keyways and other embedded items from the curing compound. Water cure, as specified in paragraph B hereunder, all concrete surfaces that are to be exposed to wastewater, surfaces that are to be coated with a coal tar epoxy system, and concrete floors requiring a bond for special finishes.

2. Do not apply compound during periods of rainfall. Should the film become damaged from any cause within the required curing period, immediately repair the damaged portions with additional compound. Upon removal of forms, immediately coat the newly exposed surfaces to provide a curing treatment equal to that provided for the surface.

3. Curing and Sealing Compound: Use clear compound conforming to Federal Specification TT-C-800A, 30% solids content minimum, having test data from an independent laboratory indicating a maximum moisture loss of 0.030 grams per sq. cm. when applied at a coverage rate of 300 sq. ft per gallon, and equal to Super Floor Coat or Super Pliocure by The Euclid Chemical Company or Masterseal 66 by Master Builders. Furnish manufacturer's certification as required.
4. Apply specified clear curing and sealing compound to all horizontal areas so noted on the Drawings or in the Specifications. Apply immediately after final finishing. Apply this compound to non-structural construction joints of slabs on grade to act as a bond breaker prior to placement of adjacent concrete.

B. Water Curing Method: Cure all concrete that is to be water cured by either the wet burlap method, by continuous fogging or by covering with waterproof sheet.

1. Wet Burlap Method: Cover concrete surface with a double thickness of burlap, cotton mats, or other approved material, kept thoroughly saturated with water. Keep the forms wet until removed and upon removal, start the curing specified herein immediately. Cure the concrete for a period of 7 days for normal Portland cement or 4 days for high early strength cement. Do not submerge concrete poured in the dry until it has attained sufficient strength to adequately sustain the stress involved and do not subject it to flowing water across its surface until it has cured 4 days.

2. Continuous Fogging: Perform continuous fogging by fogging with a nozzle which so atomizes the flow of water that a mist, and not a spray, is formed. Fog the concrete surface regularly without allowing any part of the surface to become dry. Take all necessary precautions to prevent erosion of the concrete surface by the water.

3. Covering with Waterproof Sheets: Keep the entire area to be cured continuously wet by fogging, as specified in the fogging paragraph above, for at least 18 hours and then immediately cover with waterproof curing sheet conforming to ASTM C171, waterproof paper and polyethylene film, free of holes or tears. Keep sheet fully flat, without wrinkles or air bubbles, held down tautly at all edges. Do not use this method on slabs which will be exposed to view.

3.04 PLACING REINFORCEMENT

A. All reinforcement shall be detailed, fabricated and erected in accordance with the A.C.I. "Manual of Standard Practice for Detailing Reinforced Concrete Structure", (A.C.I. 315), including bar supports and spacers. At splices all reinforcing bars shall be lapped a minimum of twenty-four (24) bar diameters but not less than twelve (12) inches.

B. The reinforcing shall be fabricated to the shapes and dimensions shown and shall be placed where indicated on the drawing. Before placing, all reinforced steel shall be thoroughly cleaned of rust, mill scale or coatings, which would reduce or destroy the bond. Reinforcing bars shall conform to the requirements of the latest editions of the A.C.I. Code and the CRSI Manuals.
C. Wire mesh, unless otherwise shown on the drawings or specified, shall be 6" x 6" No. 10 woven or electrically welded wire fabric conforming to the requirements of ASTM Designation A185, latest revision.

D. Space chairs and bolsters in accordance with ACI 315 and 318 using height to furnish cover over reinforcing required. Chairs with plastic feet or stainless steel shall be used in all beams and elevated slabs. Chairs for other concrete adjacent to or on the ground may be pieces of concrete block or concrete brick compressed into subgrade with the rebars bearing directly on the pointed edge of the masonry supports, or chairs set on precast concrete pads compressed into the subgrade.

E. When placed in the forms, reinforcement shall be clean and free of all loose rust, scale, dust, dirt, paint, oil or other foreign material, and shall be accurately and securely positioned both laterally and vertically before placing concrete. Minimum clearances between the steel and face of concrete shall be maintained as shown.

F. The rebars shall be fastened together at every intersection or at intervals not greater than 24 bar diameters by wire ties or by some alternate method acceptable to the Engineer. In areas where large bars are closer together, the wire ties may be spaced not more than 30 bar diameters apart, rather than as specified above.

3.05 FORMS

A. Installation and erection shall be in accordance with ACI 347 and as specified hereinafter.

B. Forms shall conform to shape, lines and dimensions of numbers indicated, and shall be sufficiently tight to prevent leakage of mortar. They shall not deflect under dead load weight of construction as a liquid or of construction load. Forms shall be properly braced or tied together so as to maintain position and shape within specified tolerances. Construct forms so that they can be removed steadily without hammering or prying against the concrete. Forms for exposed concrete shall be carefully made and accurately placed to obtain correct shape and line.

C. Forms shall be of wood, metal, or other approved materials. Metal forms shall be of a type and manufacture acceptable to the Engineer. Plywood, fiberboard, or absorptive type form linings may be used where appropriate. Sectional forms shall produce a uniform surface and shall be assembled in a modular pattern. Pours will not be scheduled until all erection and bracing is complete. Walers, ties and braces shall be required for all forms.

Chamfer strips made from nominal dimensional 1" x 1" lumber cut on the diagonal shall be installed at the top of the forms on all exposed edges of walls, slabs, beams and other structures above grade.

D. Drip edge shall be made from wood quarter round and installed where shown. Extruded plastic fillets shall be used where detailed. Circular structures shall be formed with special care, and attention to the appearance of the finished structure.
Random location of fillers, non-modular sections, and excessive deviations from true circular segments shall be cause for rejection of the forms.

E. The Contractor shall be fully responsible for the adequacy of formwork in its entirety. Forms shall support required loads and shall maintain their dimensional and surface correctness to produce members required by drawings.

F. Slots, chases, recesses or other openings as shown on the drawings or as needed for the work of any other trades shall be boxed out.

G. Box out for all temporary openings and build forms to seal them up when and as required.

H. After sealing and immediately before the placing of reinforcing, faces of all forms in contact with the concrete shall receive a thorough coating of the liquid form releasing agent, applied in compliance with the Manufacturer's instructions.

I. Reused forms shall be thoroughly cleaned out of dirt, debris, concrete and foreign matter. Forms shall not be reused if they have developed defects which would affect their tightness and strength or desired surface finish. Used forms shall not be used for architectural concrete.

J. Forms shall be removed in a manner that will prevent injury to concrete. Supporting forms or shoring shall not be removed until the members have acquired sufficient strength to support their weight and any load thereon.

K. Removal shall be in sequence as approved by the Engineer. Unless test cylinders warrant another procedure, the forms shall not be removed from members prior to the time listed in the schedule hereinafter unless otherwise directed.

L. Bonding To Existing Surfaces: Clean existing concrete surfaces that are to have new concrete bonded thereto of all grease, oil, dust, dirt and loose particles and coat with an epoxy bonding agent just prior to placing of the new concrete. Apply the bonding agent as recommended by the manufacturer and allow the agent to become tacky before the new concrete is placed. Do not allow the bonding agent to overlap or be spilled on the surfaces to be exposed after the work is completed.

3.06 FORM REMOVAL

A. Maintain formwork in place for the following structural conditions until the concrete has attained the minimum percentage of indicated design compressive strength or for the period of time specified in the following table.

Note: Time periods in the table include all days except those in which the temperature falls below 40 degrees F.

<table>
<thead>
<tr>
<th>Normal Compressive</th>
<th>Minimum</th>
</tr>
</thead>
</table>

03300 - 16
<table>
<thead>
<tr>
<th>Structural Member or Condition</th>
<th>Normal Concrete</th>
<th>High-Early Strength Concrete</th>
<th>Strength for Form Removal (% Design Strength)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantilevers</td>
<td>12 days</td>
<td>7 days</td>
<td>90</td>
</tr>
<tr>
<td>Over 20 feet between supports</td>
<td>12 days</td>
<td>7 days</td>
<td>90</td>
</tr>
<tr>
<td>Stairway</td>
<td>10 days</td>
<td>5 days</td>
<td>80</td>
</tr>
<tr>
<td>Floor Slabs</td>
<td>5 days</td>
<td>3 days</td>
<td>70</td>
</tr>
<tr>
<td>Free standing walls, column and piers</td>
<td>5 days</td>
<td>3 days</td>
<td>70</td>
</tr>
<tr>
<td>Walls, piers columns, sides of beams, footings slabs on grade, and vertical surfaces</td>
<td>24-48 hours</td>
<td>12-24 hours</td>
<td>70</td>
</tr>
<tr>
<td>Front face form of curbs</td>
<td>6-24 hours</td>
<td>6 hours</td>
<td>70</td>
</tr>
</tbody>
</table>

3.07 CONCRETE FINISHINGS

A. Repair of Surface Defects:

1. General: Repair surface defects, including tie holes immediately after form removal. Dampen the area to be patched and an area at least 6 inches wide surrounding it to prevent absorption of water from the patching mortar. Notify the Engineer prior to commencing operations.

2. Removal of Defective Concrete: Remove all honeycombed and other defective concrete down to sound concrete. Cut edges perpendicular to the surface or slightly under cut. Sand blast surfaces to receive repair.

3. Bonding Grout: Thoroughly dampen surfaces to be patched and apply a coat of bonding grout consisting of one part cement to one part fine sand passing a No. 30 sieve and having the consistency of thick cream.

4. Placing Patching Mortar: After the bonding grout begins to lose its water sheen, apply a premixed patching mortar, thoroughly consolidating it into place and striking it off so as to leave the patch slightly higher than the surrounding surface. Leave mortar undisturbed for one hour to permit initial shrinkage and then finally finish.
5. Tie Holes: After being cleaned and thoroughly dampened, fill the tie holes solid with patching mortar.

B. Concrete Finishes:

1. Formed Surfaces: After removal of forms, chip off all irregular projections, grind flush with adjacent surfaces and finish concrete surfaces in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Finish Designation</th>
<th>Area Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>Exterior walls below grade not exposed to water: Repair defective concrete, fill depressions deeper than 2 inch, and fill tie holes.</td>
</tr>
<tr>
<td>F-2</td>
<td>Exterior and interior walls exposed to water: Repair defective concrete, remove fins, fill depressions 3 inch or deeper, and fill tie holes.</td>
</tr>
<tr>
<td>F-3</td>
<td>Walls of structures of buildings exposed to view and underside of formed floors or slabs: In addition to Finish F-2, fill depressions and airholes in mortar. Dampen surfaces and then spread a slurry consisting of one part cement and one and one-half parts sand by damp loose volume on the surface with clean burlap pads or sponge rubber floats. Remove any surplus by scraping and then rubbing with clean burlap.</td>
</tr>
<tr>
<td>F-4</td>
<td>Tops of walls, beams and similar unformed surfaces occurring adjacent to formed surfaces: Strike smooth after concrete is placed and float to a texture reasonably consistent with that of formed surfaces.</td>
</tr>
</tbody>
</table>

2. Slab Surfaces:

a. General: After concrete has been consolidated, finish all concrete slabs with a floated finish. After floating, trowel finish all concrete slabs, except for areas to receive roofing, insulation, tile or topping, and immediately light broom finish. Where a finish is not indicated, provide a troweled finish.

<table>
<thead>
<tr>
<th>Finish Designation</th>
<th>Area Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Slabs and floors not water bearing: Smooth steel trowel finish.</td>
</tr>
</tbody>
</table>
S-2 Slabs and floors which are water bearing and slab surfaces on which mechanical equipment moves: Steel trowel finish free from trowel marks and all irregularities.

S-3 Slabs, floors and stair treads of structures or buildings exposed to view: Steel trowel finish without local depressions or high points and apply a light hair-broom finish. Do not use stiff bristle brooms or brushes. Leave hair-broom lines parallel to the direction of slab drainage.

S-4 Slabs and floors at slopes greater than 10%: Steel trowel finish without local depressions or high points. Apply a stiff bristle broom finish. Leave broom lines parallel to the direction of slope drainage.

S-5 Exposed edges of slabs, floors and tops of walls: Finish with a 3 inch radius edge if a chamfer is not indicated.

C. Floated Finish: After concrete has been placed, consolidated, struck off and leveled, do not work the surface further until water sheen has disappeared and the surface has hardened sufficiently to permit floating. During the first floating, check the planeness of the slab with a 10 foot straightedge applied at no less than two angles. Cut down all high spots and fill all low spots to produce a surface having the required tolerance. Then refloat the slab to a uniform sandy texture.

D. Light Broomed Finish: After floating, power trowel slabs to receive a light broomed finish to produce a smooth surface, relatively free of defects. Before the surface sets, pass a soft broom drag over the surface to produce a surface uniform in texture and appearance.

E. Troweled Finish: After floating, power trowel slabs to receive a troweled finish to produce a smooth surface, relatively free of defects. Hand trowel after the surface has hardened sufficiently. When a ringing sound is produced as the trowel is moved over the surfaces, perform final troweling by hand to produce a surface which is thoroughly consolidated, free from trowel marks, uniform in texture and appearance and plane to a tolerance of 1/8 inch in 10 feet as determined by a 10 foot straightedge placed anywhere on the slab in any direction.

F. Hardener Finish: Where indicated to receive a troweled hardener finish, water cure slabs without application of curing and sealing agent. When slab is at least 20 days old and thoroughly dry, apply the hardener in accordance with the manufacturer's recommendations. Where dry-shake hardener or slip resistant finish is required, apply the hardener or slip-resistant product prior to complete curing and finishing, in accordance with the requirements and recommendations of the product manufacturer.

G. Saw Cut Joints: Cut joints that are to be saw cut not sooner than 2 hours after the concrete is poured and not later than 8 hours after the pour.

3.07 TESTS
A. Compressive strength tests shall be made by breaking standard 6-inch diameter by 12-inch high test specimens prepared, cured and broken in accordance with the American Society for Testing Materials Standard Methods C-31 and C-39, latest revision. Four specimen test cylinders shall be taken from each pour of five (5) cubic yards or more. One additional test shall be taken from each thirty (30) cubic yards or fraction thereof in each pour in excess of thirty (30) cubic yards.

B. Test specimens shall be taken from manhole bottom pours of less than five (5) cubic yards as directed by the Engineer. Test specimens shall be taken in the presence of the Engineer. One cylinder from each pour shall be broken at seven (7) days, the remainder at twenty-eight (28) days. Additional test cylinders may be ordered for determining the characteristics of a new design mix or changes in equipment or methods, and under adverse weather or curing conditions.

C. Slump test shall be made in accordance with ASTM C143, latest revision, and shall be made with each load and at time of cylinders.

D. The Contractor shall supply all cylinder molds, slump cones, tools and labor for preparing specimen, and shall provide clean, moist sand or burlap for curing. Cylinder shall not be shipped to the testing laboratory until the third day following preparation, and shall be protected from accidental damage at all times.

E. The test cylinders shall be tested in a recognized commercial testing laboratory at the expense of the Contractor.

3.08 EXPANSION JOINTS, CONSTRUCTION JOINTS AND WATER STOPS

A. Expansion Joints shall be places as indicated on the drawings. Joint materials for surfaces exposed to water and sewage shall conform to ASTM D175, Preformed Joint Filler, non-extruding and resilient (bituminous type), thickness as shown on the drawings. Joint materials for isolation joints, slab-on-grade joints and wall joints not exposed to water and sewage shall conform to ASTM D994, preformed expansion joint filler for concrete (bituminous type), thickness as shown on the drawings.

B. Construction Joints shall be located in accordance with a schedule of pours which shall be prepared and submitted by the Contractor. Vertical construction joints shall be held to the minimum number consistent with good standard practice.

C. Water Stops. Material for water stops shall be 9-inch PVC multi-rib center-bulb type for expansion joints, and 1/4" x 4" and 1/8" x 4" structural steel sheets for construction joints. PVC joint material shall be as manufactured by The Burke Company, or approved equal.

END OF SECTION
PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: The work under this Section includes the design, casting, delivery and erection of concrete structures as indicated on the Drawings.

1.02 QUALITY ASSURANCE

A. Standards: Unless otherwise indicated, all materials, workmanship and practices shall be in accordance with the current editions of the following standards:

2. ACI 318, Building Code Requirements for Reinforced Concrete.

3. PCI MNL 116, Manual for Quality Control for Plants and Production of Precast Concrete Products.

1.03 SUBMITTALS

A. The following information shall be submitted for approval. Fabrication shall not begin until submission has been approved.

1. Quality Control: Satisfactory evidence shall be submitted that plant and production methods meet the requirements of PCI MNL 116.

2. Design: Complete calculations including shear, moment, buoyancy, and camber calculations shall be submitted. All computation sheets shall bear the seal of a Professional Engineer registered in the State of Florida. Design water table shall be assumed to be at finished grade.

3. Shop Drawings: Complete fabrication and erection drawings shall be submitted. All drawings shall bear the seal of a Professional Engineer registered in the State of Florida.

B. Manufacturer's data sheets shall be submitted on the following:

1. Joint mastic and gaskets.

2. Pipe connections.

3. Grout material.
4. Hatches and manhole covers

1.04 DELIVERY, STORAGE AND HANDLING

A. Transportation and erection shall be done by qualified personnel using proper equipment. Lifting and supporting shall be done only at points indicated on the shop drawings.

PART 2 - PRODUCTS

2.01 MATERIALS AND FABRICATION

A. Precast Concrete Structures:

1. Design loads shall consist of dead load, live load, impact, soil loads and loads due to water table, as well as other loads which may be imposed upon the structure. Wetwells and manholes shall be designed in accordance with ASTM C-478. The minimum wall thickness for wetwells up to 7 feet I.D. shall be 8 inches. The minimum wall thickness for wetwells 8 feet 0 inches to 12 feet 0 inches I.D. shall be 10 inches. The minimum wall thickness for 4 foot I.D. manholes shall be 6 inches. The minimum wall thickness for valve vaults shall be 6 inches.

2. Forms used for precast concrete shall be of metal and sufficiently designed and braced to maintain their alignment under pressures of the concrete during placing. Base and first section of precast structures shall be an integral cast.

3. Aggregates: All aggregates, fine and coarse, other than lightweight aggregate shall conform to ASTM C33. Lightweight aggregates, fine and coarse, shall conform to ASTM C330. Aggregates shall be free of deleterious substances causing reactivity with oxidized hydrogen sulfide. Both types of aggregate shall be graded in a manner so as to produce a homogenous concrete mix. All materials are to be accurately weighed at a central batching facility for mixing.

4. Cement shall be Portland cement Type II.

5. Minimum compressive strength of concrete used for precast concrete structures shall be 4000 psi at 28 days.

6. Placing. All concrete shall be handled from the mixer or transport vehicle to the place of final deposit in a continuous manner, as rapidly as practicable, and without segregation or loss of ingredients, until the approved unit is completed. Maximum elapsed time from batching to placement shall be 2 hours. Concrete shall be placed in layers not over 2 feet deep. Each layer shall be compacted by mechanical internal or external vibrating equipment.
Duration of the vibration cycle shall be limited to the time necessary to produce satisfactory consolidation without causing objectionable segregation.

7. Curing:
 a. For purposes of early reuse of forms, precast concrete may be steam cured after an initial set has taken place. The steam temperature shall not exceed 160°F, and the temperature shall be raised from normal ambient temperatures at a rate not to exceed 40°F per hour.
 b. The steam cured unit shall not be removed from the forms until sufficient strength is obtained for the unit to withstand any structural strain to which it may be subjected during the form stripping operation. After the stripping of forms, further curing by means of water spraying or a membrane curing compound may be used, and shall be of a clear or white type, conforming to ASTM C 309.

8. Reinforcing steel shall be sufficiently tied to withstand any displacement during the pouring operation. All bars shall be Grade 60.

9. Joints shall be tongue and groove pipe ends sealed with round or other flexible type natural rubber joint ring gaskets in conformance with ASTM C433 or by a flexible performed bitumastic sealing material equal to Ram-Nek as manufactured by R.K. Snyder and Co., Houston, Texas. If rubber joint ring gaskets are used, interior and exterior voids in the pipe joints shall be sealed with flexible sealing material specified above, installed in strict accordance with the manufacturer's printed instructions. If manhole sections are sealed with a flexible preformed bitumastic sealing material, adequate material shall be applied so that "squeeze out" occurs at the interior and exterior of the joint. Rubber joint ring gaskets and flexible preformed bitumastic sealing material shall be provided by the manhole manufacturer.

10. Eccentric precast concrete cone sections shall be manufactured of precast concrete with reinforcing and joints as specified above for straight riser.

11. Lifting holes through the structures are not permitted. Equally spaced lifting lugs, rings or non-penetrating lift inserts shall be provided.

12. Top slabs for shallow manholes, valve vaults, and pumping station wet wells may be precast or cast-in-place. Steel reinforcing shall be as required for the dead load of the slab plus an H-20 designation live load. Concrete for top slabs shall have a compressive strength of 4000 psi at 28 days. Thickness of concrete for top slabs shall be a minimum of 6 inches for shallow manholes and valve vaults and 8 inches for pumping station wet wells.

13. Manholes inverts shall be precast into the manhole base section by the manhole manufacturer unless prior approval is obtained from the Engineer to
construct inverts in the field. The drop from inlet to outlet shall be a minimum of one inch unless approved by the Engineer. The channel height of the manhole invert shall match the crown of the exit sewer. Manhole benches shall be sloped a minimum of one inch per foot from the outside periphery of the manhole to the edge of the invert channel.

B. Sealing Compound and Grout: Plastic sealing compound shall comply with Federal Specification SS-SS-00210. Mortar shall comply with ASTM C387, Type S, or use grout complying with Section 03600.

C. Pipe Connections:

1. Pipe connections for wet wells and manholes shall be resilient, waterproof connections designed in accordance with ASTM C923 "Resilient Connectors Between Reinforced Concrete Manhole Structures and Pipes". Resilient pipe connectors shall either be cast into the manhole wall or installed following casting in a cored section of the manhole wall. Resilient connectors shall either be a gasket type connector equal to the A-Lok pipe to manhole seal as manufactured by Atlantic Concrete Products, Inc., or a flexible neoprene boot with stainless steel clamps equal to KOR-N-Seal System as manufactured by the Dukor Corporation. When the pipe is installed in the resilient manhole connector, the pipe shall be capable of 20° minimum deflection in any direction.

2. Pipe connections for wall penetrations for valve vaults and for manholes and wetwells where resilient connectors cannot be used shall be provided with wall sleeves and link seals or as specified in Section 15050.

D. Frames and Covers: Cast iron manhole frames and covers shall be provided for manholes and aluminum access hatches shall be provided for wetwells and valve vaults as specified below:

1. Standard Manhole Frames and Covers: Shall be gray iron castings conforming to ASTM A48, Class 30B for Gray Iron Castings; and shall be smooth, true to pattern, free from blow holes, sand holes, projections and other harmful defects. The seating surfaces of both the frame and cover shall be machined so that the cover will not rock after it has been seated. The cover shall be provided with a precisely machined dovetail groove with a neoprene O-ring gasket to provide a self-sealing cover. The gasket shall be glued in place at the foundry. The manhole cover shall be solid with two non-penetrating pick holes. Manholes frames and covers shall be coated on all non-machined surfaces with three coats of coal tar epoxy as specified for the Class 7 Coating System in Section 09900. Manhole frames and covers shall be U.S. Foundry and Manufacturing Corp. No. 38B, Ref. Cat. No. 225, Neenah Foundry Company No. R-1642 with a Type "B" cover or an equal approved by the Engineer.
a. Anchor Bolts: Anchor bolts for bolting manhole frame to precast manholes shall be 3/4 inch diameter galvanized all thread steel rods with a 5 inch hook for embedment in the precast manhole top section or slab, positioned at 180 degrees, at the time of manufacturer. Manhole frames shall be drilled to match the bolt settings prior to coating.

2. Aluminum Access Hatches: Aluminum hatches shall be provided for wetwells and valve vaults sized as indicated on the Drawings. Access hatches shall be a specified in Section 05540.

E. Coatings:

1. Interior and exterior surfaces of precast structures shall be coated with a primer coat and three finish coats of coal tar epoxy as specified in Section 09100.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Earthwork: The Contractor shall prepare an excavation large enough to accommodate the structure and permit sealing of openings, waterproofing, and backfilling operations. Earthwork shall conform to the applicable sections of Division 2.

B. Installation of Precast Concrete Structures: Precast concrete structures shall be constructed in a workmanlike manner at the locations and dimensions indicated on the Drawings. Precast structures shall be set on foundation of crushed stone, 12 inches thick. Crushed stone material shall be a well graded crushed stone or crushed gravel meeting the requirements of ASTM C33, Gradation No. 67 (3/4 inch to No. 4 sieve). The precast structures shall be constructed such that the structure will not transmit dead or live loads to the piping. Care shall be taken to prevent earth and other material from entering precast structures.

C. Sealing and Grouting: Fill all interior and exterior joints between precast sections with a joint sealant, as recommended by the structure manufacturer.
D. Installing Precast Sections:

1. Set each precast concrete unit plumb on a bed of sealant to make a watertight joint at least 2 inch thick with the concrete base or with a preceding unit. Point the inside joint and wipe off the excess sealant.

2. Assemble units so that the cover conforms to the elevations shown on the Drawings.

3. Pipe connections at precast structures shall be provided at the locations shown on the Drawings. Connections shall be resilient and waterproof.

4. All voids in interior and exterior manhole section joints and lift holes for manhole sections shall be filled with a non-shrinking, non-metallic grout. Grout shall be applied and cured in strict accordance with the manufacturer’s recommendations. The grout shall be finished smooth and flush with the wall surface of the manhole.

E. Manhole Flow Channels and Bench Walls:

1. Unless prior approval is obtained from the Engineer, manhole flow channels (inverts) and bench walls shall be precast into the manhole base section as specified above.

2. Upon prior approval from the Engineer, manhole inverts may be constructed in the field. Invert channel bottoms shall be smooth and semicircular in shape conforming to inside of adjacent sewer sections. Changes in direction of flow shall be made with a smooth curve of as large radius as the size of manhole will permit. Changes in size and grade of channels shall be made gradually and evenly to give a smooth uninterrupted flow pattern through the manhole. Channel height shall match the crown of the connection sewer pipe exiting the manhole. Manhole bench walls shall be smooth and shall slope one inch per foot from the edge of the invert channel to the precast manhole wall. Invert channels may be constructed by forming in concrete or by building up brick and mortar to form the manhole bench walls on each side of the channel, and plastering over bricks with cement mortar with a minimum thickness of 2 inch. Manhole invert construction shall only be performed by experienced and qualified workmen.

3. Bricks used to construct manhole invert channels and bench walls shall be standard size (22 in. H X 4 in. W X 8 in. L) brick in conformance with ASTM C32 "Sewer and Manhole Brick (Made From Clay and Shale)", Grade MS. Mortar used for masonry work shall be prepared by thoroughly mixing: One (1) volume of Type II Portland Cement with three (3) volumes of sand and sufficient clean water to produce a rich mass of approved consistency. Mixing mortar on the ground or any paved surface shall not be
permitted. Sand to be used in making mortar shall be clean, well-graded, and shall pass a standard No. 4 sieve.

F. Setting Frames and Covers:

1. Unless otherwise indicated on the Drawings, in unpaved areas the tops of manholes shall be set 0.2 feet above finished grade and the tops of wetwells and valve vaults shall be set 0.5 feet above finished grade.

2. The top of all precast manholes may be brought to proper grade for receiving manhole frame by using not more than three courses of brick or precast concrete grade rings. Bricks and mortar used for manhole top grade adjustments shall be a specified above in Paragraph 3.01.E.3. Precast concrete grade rings shall be precast with steel reinforcement in conformance with ASTM C478 and concrete with a compressive strength of 4000 psi in 28 days. Precast concrete grade rings shall be manufactured in half annular shapes for ease of handling. The grade ring dimensions shall be 2 inches thick with an annular width of 8 inches and an inside diameter of 24 inches.

3. Masonry construction shall be performed by experienced and qualified workmen only. All work shall be laid plumb, straight, level, square and true. Brick shall be laid in full beds of mortar and shoved into place. All joints shall be full and not more than 2 inch in thickness. The Contractor shall set in place and bond in the masonry all necessary anchor bolts and miscellaneous items specified elsewhere. The masonry walls shall be plastered on the inside and outside with a one-half inch coat of Portland Cement mortar.

4. Following curing of any masonry construction required for manhole top adjustment, set manhole frame in a bed of 3 to 2 inch thick flexible bitumastic sealing material (Ram-Nek) and anchor in place with two 3/4 inch diameter anchor bolts, which shall be securely embedded in the top of the manhole. Seal the flange of the manhole ring to the top of the manhole with cement mortar.

G. Interior Lining: The interior coating system shall be applied following installation of the precast structures and any piping or equipment which will penetrate or attach to the walls. Surface preparation and application of the coating system shall be in strict accordance with the manufacturer's recommendations. Refer to Section 09900 for additional specifications.

H. Backfill: After the structure and all appurtenances are in place and approved, backfill shall be placed to the original ground line or to the limits designated on the Drawings. Backfill material shall consist of sand or loose earth, free from stones, clods, or other deleterious material. It shall be placed in horizontal layers not exceeding 12 inches in depth, and shall be moistened and thoroughly compacted to a minimum relative density conforming to the requirements of Division 2.

END OF SECTION
03400 - 7
PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: This Section includes providing all labor, materials and equipment necessary to install the access hatch doors or the collection basin and the flow meter vault as indicated in the Drawings and/or specified herein.

1.02 QUALITY ASSURANCE

A. Standards: The access doors shall meet the standards of the following:

1. Standard Building Code
2. OSHA Requirements

B. Manufacturers: Halliday Products, Orlando, Florida; The Bilco Company, New Haven, Connecticut; or approved equal.

1.03 SUBMITTALS

A. Shop Drawings: Shop drawings shall be submitted to the Engineer for approval. Shop drawings shall include manufacturer's data sheets showing all materials, connections and other required details to illustrate a complete operating access door.

1.04 WARRANTY AND GUARANTEES

A. The manufacturer shall guarantee the access door against defects in material and workmanship for a period of ten (10) years. Refer to Section 01740 for requirements.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS

A. The access doors, in sizes as shown on the drawings, shall be standard design of the manufacturer.

2.02 MATERIALS

A. Each hatch shall be designed according to the openings shown on the Drawings. The aluminum access frames shall be manufactured from 1/3 inch thick, one piece extruded aluminum frame. The frame shall be a self draining channel with 1 ½ inch
draining coupling located in the channel frame. The door panels shall close flush and shall be 1/3 inch thick aluminum diamond (checker) plate. The installed access doors shall be designed to withstand traffic loads, as required. Removable aluminum cross-beams shall be provided by the hatch supplier as required to accomplish the stated loadings. The doors shall have stainless steel hinges with tamper proof fasteners. All hardware shall be made of 316L stainless steel. Each door shall have spring operators, such that the maximum lifting effort is less than 25 pounds. The hatch supplier shall provide the number of doors as required to accomplish the lifting requirements. Each door shall open to 90° and lock automatically with a stainless steel, positive locking arm and a stainless steel release handle. Each door shall have a recessed stainless steel lifting handle.

B. All access doors shall be designed with a neoprene gasket on the inside lip of the frame perimeter, to form an essentially air-tight seal.

PART 3 - EXECUTION

3.01 INSTALLATION

A. The access hatches and doors shall be installed as recommended by the manufacturer and adjusted for proper operation without binding.

END OF SECTION
PART 1 – GENERAL

1.01 Scope

A. This specification defines the methods of surface preparation, coating systems, and methods of application for painting as outlined herein.

B. The Contractor shall furnish all supervision, labor, tools, materials, equipment, scaffolding or other structures, and supervision required for the transportation, unloading, storage, and application of the paint and associated products covered by this specification.

C. The work includes painting and finishing of interior and exterior exposed items above and below grade surfaces, such as structural steel, miscellaneous metals, ceilings, walls, floors, doors, frames, pipe, handrails, posts, fittings, valves, pumps, tanks, equipment, and all other work obviously required to be painted unless otherwise specified herein or on the drawings. The omission of minor items in the schedule of work shall not relieve the contractor of his obligation to include such items where they come within the general intent of the specification as stated herein.

D. The following items will not be painted:

1. Any code requiring labels, such as Underwriters’ Laboratories and Factory Mutual, or any equipment identification, performance rating, name or nomenclature plates.
2. Any moving parts of operating units, mechanical and electrical parts, such as valve and damper operators, linkages, sinkages, sensing devices, motor and fan shafts, unless otherwise indicated.
3. Aluminum handrails, walkways, windows, louvers, and grating unless otherwise specified herein.
4. Signs and nameplates.
5. Finish hardware.
6. Stainless steel angles, tubes, pipe, etc.
7. Products with polished chrome, aluminum, nickel, or stainless steel finish.
10. Sprinkler heads.

E. All work shall be done in strict accordance with this specification, the design drawings and the painting package, including manufacturer’s printed instructions.
F. The Contractor will obtain, at its own expense, all permits, licenses and inspections and shall comply with all laws, codes, ordinances, rules, and regulations promulgated by authorities having jurisdiction, which may bear on the work. This compliance will include Federal Public Law 91-596 more commonly known as the “Occupational Safety and Health Act of 1970.”

G. Wherever the word “Engineer” occurs in this specification, it shall apply to the authorized representative of Quentin Hampton Associates, Inc. Where the word “Contractor” occurs in this specification, it shall apply to the contractor performing any part of or all of this work.

H. Surfaces to be painted: (Refer to 17.0 Coating Schedule for description of surfaces to be painted and their specified coating systems and colors).

1.02 Definitions

A. Field Painting is the painting of new or rebuilt items at the job site. Field painting shall be the responsibility of the Contractor.

B. Shop Painting is the painting of new or rebuilt items in the shop prior to delivery to the jobsite.

1.03 Abbreviations

A. The abbreviations and definitions listed below, when used in this specification, shall have the following meanings:

1. SSPC – Society for Protective Coatings
2. Exterior – Outside, exposed to weather
3. Interior Dry – Inside, not subject to immersion service
4. Interior Wet – Inside, subject to immersion service
5. ASTM – American Society of Testing Materials
6. NACE – National Association of Corrosion Engineers
7. NSF – National Sanitation Foundation
8. AWWA – American Water Works Associates

PART II - RESOLUTION OF CONFLICTS

A. It shall be the responsibility of the Contractor to arrange a meeting prior to the start of painting, or flooring installation between the Contractors, the Paint Manufacturer whose products are to be used, and the Engineer. All aspects of surface preparation, application and coating systems as covered by this specification will be reviewed at this meeting.

B. Clarification shall be requested promptly from the Engineer when instructions are lacking, conflicts occur in the specification, or the procedure seems improper or inappropriate for any reason.
C. Copies of all manufacturer’s instructions and recommendations shall be furnished to the Engineer by the Painting Contractor.

D. It shall be the responsibility of the Coating Manufacturer to have their factory representative meet in person with the Contractor and Engineer a minimum of three times during the job as a consultant on surface preparation, mil thickness of coating and proper application of coating unless meeting is determined to be unnecessary by the Engineer.

PART III - INSPECTION OF SURFACES

A. Before application of the prime coat and each succeeding coat, all surfaces to be coated shall be subject to inspection by the Engineer. Any defects or deficiencies shall be corrected by the Contractor before application of any subsequent coating.

B. Samples of surface preparation and of painting systems shall be furnished by the Contractor to be used as a standard throughout the job, unless omitted by the Engineer.

C. When any appreciable time has elapsed between coatings, previously coated areas shall be carefully inspected by the Engineer, and where, in his opinion, surfaces are damaged or contaminated, they shall be cleaned and recoated at the Contractor’s expense. Recoating times of manufacturer’s printed instructions shall be adhered to.

D. Coating thickness shall be determined by the use of a properly calibrated “Nordson-Mikrotest” “Positest” Coating Thickness Gauge (or equal) for ferrous metal or an OG232 “Tooke” Paint Inspection gauge (or equal) for non-ferrous and cementitious surfaces. Please note that use of the “tooke” gauge is classified as a destructive test.

PART IV - EQUIPMENT

A. Effective oil and water separators shall be used in all compressed air lines serving spray painting and sandblasting operations to remove oil or moisture from the air before it is used. Separators shall be placed as far as practical from the compressor.

B. All equipment for application of the paint and the completion of the work shall be furnished by the Contractor in first-class condition and shall comply with recommendations of the paint manufacturer.

C. Contractor will provide free of charge to the Engineer a “Nordson-Mikrotest” or “Positest” dry film thickness gauge for ferrous metal and an OG232 “Tooke” gauge or equal for non-ferrous and cementitious surface, to be used to inspect coatings by the Engineer and Contractor. The gauges may be used by the Contractor and returned each day to the Engineer. Engineer will return gauges to Contractor at completion of job.
PART V - MATERIALS

A. All materials specified herein are manufactured by the TNEMEC Company, Inc., Xypex Chemical Corporation, or Chemprobe Technologies, Inc. These products are specified to establish standards of quality and are approved for use on this project.

B. Equivalent materials of other manufacturers may be substituted on approval of the Engineer. Requests for substitution shall include Manufacturer’s literature for each product giving the name, generic type, descriptive information and evidence of satisfactory past performance and an independent laboratory certification that their product meets the performance criteria of the specified materials. Unless otherwise stated, the latest revision of identified specifications shall be used.

1. Abrasion – Fed. Test Method Std. No. 141, Method 6192, CS-17 Wheel, 1,000 grams load
2. Adhesion – Elcometer Adhesion Tester
3. Exterior Exposure – Exposed at 45 degrees facing the ocean (South Florida Marine Exposure)
4. Hardness – ASTM D3363
5. Humidity – ASTM D2247
6. Salt Spray (Fog) – ASTM B117

C. Bidders desiring to use coatings other than those specified shall submit their proposal in writing to the Engineer at least ten (10) days prior to the bid opening. Substitutions which decrease the film thickness, the number of coats applied, change the generic type of coating, or fail to meet the performance criteria of the specified materials will not be approved. Prime and finish coats of all surfaces shall be furnished by the same manufacturer.

D. All coatings to be shop applied must meet the requirements for volatile organic compounds (VOC) of not more than 3.5 lbs/Gallon after thinning.

E. Colors, where not specified, shall be as selected by the Owner or their Representative.

F. All coatings in contact with potable water need to be NSF Certified in accordance with ANSI/NSF Standard 61.

PART VI - WORKMANSHIP AND MATERIALS

A. Surface Preparation

1. The surface shall be cleaned as specified for the paint system being used. All cleaning shall be as outlined in the Steel Structures Painting Council’s Surface Preparation Specification, unless otherwise noted. If surfaces are subject to contamination, other than mill scale or normal atmospheric rusting, the surfaces shall be pressure washed, and acid or caustic pH residues neutralized, in addition to the specified surface preparation.
B. Standards for Surface Preparation

1. SSPC-SP1 Chemical and/or Solvent Cleaning
 a. Remove all grease, oil, salt, acid, alkali, dirt, dust, wax, fat, foreign matter, and contaminants, etc. by one of the following methods: steam cleaning, alkaline cleaning, or volatile solvent cleaning.

2. SSPC-SP2 Hand Tool Cleaning
 a. Removal of loose rust, loose mill scale, and loose paint to a clean sound substrate by hand chipping, scraping, sanding, and wire brushing.

3. SSPC-SP3 Power Tool Cleaning
 a. Removal of loose rust, loose mill scale, and loose paint to a clean sound substrate by power tool chipping, descaling, sanding, wire brushing, and grinding.

4. SSPC-SP4 Flame Cleaning
 a. Dehydrating and removal of rust, loose mill scale, and some light mill scale by use of flame, followed by wire brushing.

5. SSPC-SP5 (NACE-1) White Metal Blast Cleaning
 a. Complete removal of all mill scale, rust, rust scale, previous coating, etc., leaving the surface a uniform gray-white color.

6. SSPC-SP6 (NACE-3) Commercial Grade Blast Cleaning
 a. Complete removal of all dirt, rust scale, mill scale, foreign matter, and previous coatings, etc., leaving only shadows and/or streaks caused by rust stain and mill scale oxides. At least 66% of each square inch of surface area is to be free of all visible residues, except slight discoloration.

7. SSPC-SP7 (NACE-4) Brush-Off Blast Cleaning
 a. Removal of rust scale, loose mill scale, loose rust, and loose coatings, leaving tightly bonded mill scale, rust and previous coatings. On concrete surfaces, brush-off blast cleaning shall remove all laitance, form oils, and solid contaminants. Blasting should be performed sufficiently close to the surface so as to open up surface voids, bug holes, air pockets, and other subsurface irregularities, but so as not to expose underlying aggregate.
8. **SSPC-SP8 Pickling**

a. Complete removal of rust and mill scale by acid pickling, duplex pickling or electrolytic pickling (may reduce the resistance of the surface to corrosion, if not to be primed immediately).

9. **SSPC-SP10 (NACE-2) Near-White Blast Cleaning**

a. Removal of all rust scale, mill scale, previous coating, etc., leaving only light stains from rust, mill scale, and small specks of previous coating. At least 95% of each square inch of surface area is to be free of all visible residues and the remainder shall be limited to slight discoloration.

10. **SSPC-SP11-87 Power Tool Cleaning to Bare Metal**

a. Complete removal of rust, rust scale, mill scale, foreign matter, and previous coatings, etc., to a standard as specified on a Commercial Grade Blast Cleaning (SSPC-SP6, NACE-3) by means of power tools that will provide the proper degree of cleaning and surface profile.

11. **SSPC-SP13 (NACE-6) Surface Preparation of Concrete**

a. Surface preparation of concrete by mechanical, chemical, or thermal methods prior to the application of bonded protective coating or lining systems.

C. **Visual standards**

1. **SSPC-VIS-1 (Swedish SIS OS 5900), “Pictorial Surface Preparation Standards for Painting Steel Surfaces,” and the National Association of Corrosion Engineers, “Blasting Cleaning Visual Standards” TM-01-70 and TM-01-75 shall be considered as standards for proper surface preparation.**

2. Oil, grease, soil, dust, etc., deposited on the surface preparation that has been completed shall be removed prior to painting according to SSPC-SP1 Solvent Cleaning.

3. Weld flux, weld spatter and excessive rust scale shall be removed by Power Tool Cleaning as per SSPC-SP11-87T.

4. All weld seams, sharp protrusions, and edges shall be ground smooth prior to surface preparation or application of any coatings.

5. All areas requiring field welding shall be masked off prior to shop coating, unless waived by the Engineer.
6. All areas which require field touch-up after erection, such as welds, burnbacks, and mechanically damaged areas, shall be cleaned by thorough Power Tool as specified in SSPC-SP11-87T.

7. “Touch-up systems will be same as original specification except that approved manufacturer’s organic zinc-rich shall be used in lieu of inorganic zinc where this system was originally used. Also strict adherence to manufacturer’s complete touch-up recommendations shall be followed. Any questions relative to compatibility of products shall be brought to the Engineer’s attention; otherwise, Contractor assumes full responsibility.

PART VII – PRE-TREATMENTS

A. When specified, the surface shall be pretreated in accordance with the specified pretreatment prior to application of the prime coat of paint.

PART VIII - STORAGE

A. Materials shall be delivered to the job site in the original packages with seals unbroken and with legible unmutilated labels attached. Packages shall not be opened until they are inspected by the Engineer and required for use. All painting materials shall be stored in a clean, dry, well-ventilated place, protected from sparks, flame, and direct rays of the sun or from excessive heat. Paint susceptible to damage from low temperatures shall be kept in a heated storage space when necessary. The Contractor shall be solely responsible for the protection of the materials stored by himself at the job site. Empty coating cans shall be required to be neatly stacked in an areas designated by the Engineer and removed from the job site on a schedule determined by the Engineer. Engineer may request a notarized statement from contractor detailing all materials used on the project.

PART IX - PREPARATION OF MATERIALS

A. Mechanical mixers, capable of thoroughly mixing the pigment and vehicle together, shall mix the paint prior to use where required by manufacturer’s instructions; thorough hand mixing will be allowed for small amounts up to one gallon. Pressure pots shall be equipped with mechanical mixers to keep the pigment in suspension, when required by manufacturer’s instructions. Otherwise, intermittent hand mixing shall be done to assure that no separation occurs. All mixing shall be done in accordance with SSPC Vol. 1, Chapter 4, “Practical Aspects, Use and Application of Paints” and/or with manufacturer’s recommendations.

B. Catalysts or thinners shall be as recommended by the manufacturer and shall be added or discarded strictly in accordance with the manufacturer’s instruction.
PART X - APPLICATION

A. Paint shall be applied only on thoroughly dry surfaces and during periods of favorable weather, unless otherwise allowed by the paint manufacturer. Except as provided below, painting shall not be permitted when the atmospheric temperature is below 50°F, or when freshly painted surfaces may be damaged by rain, fog, dust, or condensation, and/or when it can be anticipated that these conditions will prevail during the drying period.

B. No coatings shall be applied unless surface temperature is a minimum of 5° above dew point; temperature must be maintained during curing.

DEW POINT CALCULATION CHART

Ambient Air Temperature – Fahrenheit

<table>
<thead>
<tr>
<th>Relative Humidity</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>18</td>
<td>28</td>
<td>37</td>
<td>47</td>
<td>57</td>
<td>67</td>
<td>77</td>
<td>87</td>
<td>97</td>
<td>107</td>
<td>117</td>
</tr>
<tr>
<td>85%</td>
<td>17</td>
<td>26</td>
<td>36</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>76</td>
<td>84</td>
<td>95</td>
<td>103</td>
<td>113</td>
</tr>
<tr>
<td>80%</td>
<td>16</td>
<td>25</td>
<td>34</td>
<td>44</td>
<td>54</td>
<td>63</td>
<td>73</td>
<td>82</td>
<td>93</td>
<td>102</td>
<td>110</td>
</tr>
<tr>
<td>75%</td>
<td>15</td>
<td>24</td>
<td>33</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>71</td>
<td>80</td>
<td>91</td>
<td>100</td>
<td>108</td>
</tr>
<tr>
<td>70%</td>
<td>13</td>
<td>22</td>
<td>31</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>68</td>
<td>78</td>
<td>88</td>
<td>96</td>
<td>105</td>
</tr>
<tr>
<td>65%</td>
<td>12</td>
<td>20</td>
<td>29</td>
<td>38</td>
<td>47</td>
<td>57</td>
<td>66</td>
<td>76</td>
<td>85</td>
<td>93</td>
<td>103</td>
</tr>
<tr>
<td>60%</td>
<td>11</td>
<td>29</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>55</td>
<td>64</td>
<td>73</td>
<td>83</td>
<td>92</td>
<td>101</td>
</tr>
<tr>
<td>55%</td>
<td>9</td>
<td>17</td>
<td>25</td>
<td>34</td>
<td>43</td>
<td>53</td>
<td>61</td>
<td>70</td>
<td>80</td>
<td>89</td>
<td>98</td>
</tr>
<tr>
<td>50%</td>
<td>6</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>50</td>
<td>59</td>
<td>67</td>
<td>77</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>45%</td>
<td>4</td>
<td>13</td>
<td>21</td>
<td>29</td>
<td>37</td>
<td>47</td>
<td>56</td>
<td>64</td>
<td>73</td>
<td>82</td>
<td>91</td>
</tr>
<tr>
<td>40%</td>
<td>1</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>43</td>
<td>52</td>
<td>61</td>
<td>69</td>
<td>78</td>
<td>87</td>
</tr>
<tr>
<td>35%</td>
<td>-2</td>
<td>8</td>
<td>16</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>48</td>
<td>57</td>
<td>65</td>
<td>74</td>
<td>83</td>
</tr>
<tr>
<td>30%</td>
<td>-6</td>
<td>4</td>
<td>13</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>52</td>
<td>61</td>
<td>69</td>
<td>77</td>
</tr>
</tbody>
</table>

SURFACE TEMPERATURE AT WHICH CONDENSATION OCCURS

C. Dew Point

1. Temperature at which moisture will condense on surface. No coatings should be applied unless surface temperature is a minimum of 5° above this point. Temperature must be maintained during curing.

D. Example

1. If air temperature is 70°F and relative humidity is 65%, the dew point is 57°F. No coating should be applied unless surface temperature is 62°F minimum.
E. No coatings shall be applied unless the relative humidity is below 85%.

F. Suitable enclosures to permit painting during inclement weather may be used if provisions are made to control atmospheric conditions artificially inside the enclosure, within limits suitable for painting throughout the painting operations.

G. Field Painting in the immediate vicinity of, or on, energized electrical and rotating equipment, and equipment and/or pipes in service shall not be performed without the approval of the Engineer.

H. Extreme care shall be exercised in the painting of all operable equipment, such as valves, electric motors, etc., so that the proper functioning of the equipment will not be affected.

I. The Contractor’s scaffolding shall be erected, maintained, and dismantled without damage to structures, machinery, equipment or pipe. Drop cloths shall be used where required to protect buildings and equipment. All surfaces required to be clear for visual observations shall be cleaned immediately after paint application.

J. Painting shall not be performed on insulated pipe within three (3) feet of insulation operations or on insulation where covering and surface coat have not had time to set and dry. Painting shall not be performed on uninsulated pipe within one (1) foot of any type of connection until the connection has been made, except as directed by the Engineer.

K. The prime coat shall be applied immediately following surface preparation and in no case later than the same working day. All paint shall be applied by brushing, paint mitt and roller, conventional spraying, or airless spraying, using equipment approved by the paint manufacturer.

L. Each coat of paint shall be recoated as per manufacturer’s instructions. Paint shall be considered recoatable when an additional coat can be applied without any detrimental film irregularities such as lifting or loss of adhesion.

M. Surfaces that will be inaccessible after assembly shall receive either the full specified paint system or three shop coats of the specified primer before assembly.

N. Finish colors shall be in accordance with the COLOR SCHEDULE and shall be factory mixed (i.e., there shall be no tinting by the Contractor, unless authorized by the Engineer).

O. All edges and weld seams in immersion service shall receive a “stripe coat” (applied by brush) of the 1st coat prior to application of the full 1st coat.

P. All open seams in the roof area of tanks shall be filled after application of the topcoat with a flexible caulking such as Sika Flex 1A.

9900-9
PART XI - WORKMANSHIP

A. The Contractor must show proof that all employees associated with this project shall have been employed by the Contractor for a period not less than six (6) months.

B. Painting shall be performed by experienced painters in accordance with the recommendations of the paint manufacturer. All paint shall be uniformly applied without sags, runs, spots, or other blemishes. Work, which shows carelessness, lack of skill, or is defective in the opinion of the Engineer, shall be corrected at the expense of the Contractor.

C. The Contractor shall provide the names of at least 6 other projects of similar size and scope that they have successfully completed under their current company name.

D. Application of Paint

1. **BY BRUSH AND/OR ROLLERS**

a. Top quality, properly styled brushes and rollers shall be used. Rollers with a baked phenohl core shall be utilized.

 b. The brushing or rolling shall be done so that a smooth coat as nearly uniform in thickness as possible is obtained. Brush or roller strokes shall be made to smooth the film without leaving deep or detrimental marks.

 c. Surfaces not accessible to brushes or rollers may be painted by spray, by dauber or sheepskins, and paint mitt.

 d. It may require 2 coats to achieve the specified dry film thickness if application is by brush and roller.

E. **Air, Airless, Or Hot Spray**

1. The equipment used shall be suitable for the intended purpose, shall be capable of properly atomizing the paint to be applied and shall be equipped with suitable pressure regulators and gauges.

2. Paint shall be applied in a uniform layer, with a 50% overlap pattern. All runs and sags should be brushed out immediately or the paint shall be removed and the surface resprayed.

3. High build coatings should be applied by a crosshatch method of spray application to ensure proper film thickness of the coating.

4. Areas inaccessible to spray shall be brushed; if also inaccessible to brush, daubs or sheepskins shall be used, as authorized by the manufacturer.
5. Special care shall be taken with thinners and paint temperatures so that paint of the correct formula reaches the receiving surface.

6. Nozzles, tips, etc., shall be of sizes and designs as recommended by the manufacturer of the paint being sprayed.

7. The first coat on concrete surfaces in immersion service should be sprayed and backrolled.

PART XII - PROTECTION AND CLEAN-UP

A. It shall be the responsibility of the Contractor to protect at all times, in areas where painting is being done, floors, materials of other crafts, equipment, vehicles, fixtures, and finished surfaces adjacent to paint work. Cover all electric plates, surface hardware, nameplates, gauge glasses, etc., before start of painting work.

B. At the option of the Engineer during the course of this project, the Contractor will contain all spent abrasives, old paint chips, paint overspray and debris by means suitable to the Engineer, including but not limited to, full shrouding of the area.

C. If shrouding is required, the Contractor must provide a complete design of the intended shroud or cover. Care must be taken not to modify or damage the structure during the use of the shroud. If damage should occur, the Contractor is held responsible for all repairs.

D. At completion of the work, remove all paint where spilled, splashed, splattered, sprayed or smeared on all surfaces, including glass, light fixtures, hardware, equipment, painted, and unpainted surfaces.

E. After completion of all painting, the Contractor shall remove from job site all painting equipment, surplus materials, and debris resulting from this work.

F. The Contractor is responsible for the removal and proper disposal of all hazardous materials from the jobsite in accordance with Local, State, and Federal requirements as outlined by the Environmental Protection Agency.

G. A notarized statement shall be presented to the Engineer that all hazardous materials have been disposed of properly including but not limited to: Name of disposal company, disposal site, listing of hazardous materials, weights of all materials, cost per pound and EPA registration number.

PART XIII - TOUCH-UP MATERIALS

A. The Contractor shall provide at the end of the project at least one (1) gallon of each generic topcoat in each color as specified by the Engineer for future touch-up. Two gallons may be required for (2) component materials.
PART XIV - ON-SITE INSPECTION

A. During the course of this project the Engineer will reserve the option of incorporating the services of a qualified inspection service. The inspection service will be responsible for assuring the proper execution of this specification by the successful contractor.

PART XV - COATING SYSTEM SCHEDULE

A. STEEL – STRUCTURAL, TANKS, PIPES, AND EQUIPMENT

1. EXTERIOR EXPOSURE (NON-IMMERSION)

A.1 System No. 73-1 Epoxy/High Build Urethane
Surface Preparation: SSPC-SP6 Commercial Blast Cleaning

<table>
<thead>
<tr>
<th>DFT-Mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Coat: 66-1255 Epoxoline Primer</td>
</tr>
<tr>
<td>2nd Coat: 66-Color Hi-Build Epoxoline</td>
</tr>
<tr>
<td>3rd Coat: 73-Endura-Shield</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Minimum 8.0 Mils</td>
</tr>
</tbody>
</table>

NOTE: This system is highly resistant to abrasion, wet conditions, corrosive fumes, and chemical contact. Provides 2-3 times the color and gloss retention of conventional paints. Second coat to be same color or close to finish color. Specify Series 1074 Endura-Shield for a gloss finish. Specify Series 161 in lieu of the 66 for faster recoats or lower temperature curing.

A.2 System No. 73-2 High Build Urethane For Marginally Cleaned Surfaces or Topcoating Existing Systems.
Surface Preparation: SSPC-SP6 Commercial Blast Cleaning or SSPC-SP3 Power Tool Cleaning Feather all edges.

<table>
<thead>
<tr>
<th>DFT-Mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop Coat: Manufacturer Standard Primer (or existing coating)</td>
</tr>
<tr>
<td>Tie Coat: 135 Chembuild</td>
</tr>
<tr>
<td>Topcoat: 73-Color Endura-Shield</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Minimum 7.5 Mils</td>
</tr>
</tbody>
</table>

NOTE: This system can be used over factory finish paint or over non-sandblasted steel and offer the high performance of a urethane coating. Specify Series 1074 Endura-Shield for gloss finish. A test patch is always recommended to insure proper application.

END OF SECTION
PART 1 - GENERAL

1.01 WORK INCLUDED - DESCRIPTION

A. Scope of Work: Furnish all labor, materials, equipment and incidentals required to install complete and ready for operation all pumps related equipment specified in Division 11 and Division 15.

B. Except as specified to the contrary in the specific pump specifications, this specification shall be complied with for all pumping units.

C. Related Work Described Elsewhere:

1. Shop Drawings: Section 01340
2. Material and Equipment: Section 01600
3. Start-up: Section 01650
4. Operations and Maintenance Data: Section 01730
5. Warranties and Bonds: Section 01740
6. Painting: Division 9
7. Equipment: Division 11
8. Pipe and Pipe Fittings: Division 15
9. Valve and Specialties - General: Division 15
10. General Mechanical Requirements: Section 15000
11. Instrumentation: Division 13 and respective equipment sections
12. Motors and Starters: Division 16

D. General Design: Refer to respective sections of the specifications.

1.02 QUALITY ASSURANCE

A. Qualifications:

1. The pumping units specified herein are to be standard pumping units for the intended service and shall be the product of a fully experienced, reputable and qualified manufacturer. The manufacturer shall supply the Engineer with information pertaining to three (3) installations where equipment of the specific type, size and function have been in operation for not less than five (5) years with the shop drawing submittal. The information shall contain items as follows:

 a. Installation name and location.

 b. Date of installation of equipment.
c. Date of start up of equipment.

d. Personnel at installation which can be contacted with telephone numbers and extensions.

2. The Supplier shall supply the services of a qualified factory-trained service representative for a period specified under the individual equipment specifications. The representative shall inspect the completed equipment installation to ensure that it meets with the manufacturer's recommendations. Any adjustments or modifications shall be made, at not additional cost to the Owner, to place the equipment in trouble-free operation.

B. Equipment Manufacturer: Refer to respective sections of the contract documents.

1.03 SUBMITTALS

A. Materials and Shop Drawings:

1. The Contractor to conform shop drawings to Section 01340 and as required below.

2. The Contractor shall submit the following to the Engineer for approval in accordance with Section 01340:

a. Manufacturer's literature, illustrations and applicable data for the individual pumps, including the total weight of the equipment and the weight of the single largest item.

b. Manufacturer's certified curves illustrating pump characteristics of head, discharge, brake horsepower, efficiency, required net positive suction head, and available suction lift.

1) Curves shall be submitted on 8 ½ inch x 11 inch sheets, at as large a scale as is practical. Curves shall be plotted from no flow at shut off head to maximum pump runout head and gallonage allowed by the manufacturer. Curves for variable speed pumps shall be provided for maximum running, full load RPM as specified, and a minimum of 4 other curves of equal speed increments not inclusive of 0 RPM (i.e., 1760, 1408, 1056, 704, 352).
2) Points of operation which cause bearing stress or shaft deflection in excess of the manufacturer's tolerances for continuous operation shall be indicated on the submitted curves.

c. The shop drawings shall include details of pump assembly, installation layouts, procedures, types of materials used in pump construction, details on all pump accessories, and dimensions of major components. Where applicable, and pumps are provided as part of a complete package inclusive of controls, control diagrams shall be provided.

d. A complete total bill of materials for all equipment.

e. A list of manufacturer's recommended spare parts to be supplied, with the manufacturer's current price for each item. Include O-rings, seals, etc. on the list. List bearings by the bearing manufacturer's name and numbers only.

f. Pumping equipment, requiring special tools for maintenance, shall be provided with one set of tools labeled, packed with instructions for use, and housed in a metal tool box with lock end hoop for each two units provided.

g. Motor data shall be submitted in accordance with the specific equipment specification and Section 16175.

B. Operating and Maintenance Instructions: For all pumps furnished under this Section, the Contractor shall submit operation and maintenance manuals in accordance with requirements of Section 01730 to include, at a minimum, the following:

1. Equipment function

2. Description

3. Normal and limiting operating characteristics

4. Installation instructions (assembly, alignment and adjustment procedures).

5. Operation instructions (normal start up and shut down procedures, normal operating conditions and emergency situations).

6. Lubrication and maintenance instructions

7. Troubleshooting guide

8. Parts list and predicted life of parts subject to wear
9. Drawings - cross sectional view, assembly and wiring diagrams

10. Performance curves

C. Factory Performance Test Data:

1. After acceptance of pump shop drawings, factory performance test data will be submitted for approval on each pumping unit. Duplicate units require factory testing for only specified flow and head conditions, unless otherwise specified under the specific pump specification. Tests conducted in accordance with these specifications on similar units within 24 months may be submitted in lieu of tests on the actual units to be supplied.

2. Test shall be certified by a registered professional engineer.

3. Tests shall be in accordance with the standards of the Hydraulic Institute including head, capacity, brake horsepower, pump efficiency and NPSH.

D. Certifications: The Contractor shall furnish the Engineer with a written certification signed by the manufacturer's representative that the equipment has been properly installed and lubricated, is in accurate alignment, is free from undue stress imposed by piping or mounting bolts, and has been operated under full load conditions and that satisfactory operation has been obtained. Refer to Section 01650 for more details.

1.04 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Refer to Section 01600.

B. Finished surfaces of all exposed pump openings shall be protected by wooden blanks.

C. After hydrostatic or other tests, all entrapped water shall be drained prior to shipment, and proper care shall be taken to protect parts from the entrance of water during shipment, storage, and handling.

D. Each box or package shall be properly marked to show its net weight in addition to its contents.

E. For equipment such as pumping units, which require field alignment and connections, the Contract shall provide the services of the equipment manufacturer's qualified mechanic, millwright, machinist, or authorized representative, to align the pump and motor prior to making piping connections or anchoring the pump base.

F. Precision gauges and levels shall be used in setting all equipment. All piping and equipment shall be perfectly aligned, horizontally and vertically. Tolerances for
piping and equipment installation shall be 1/2 inch in 30 foot horizontal and vertical. All valves and operators shall be installed in the position shown on the plans or as directed by the Engineer if not shown.

1.05 WARRANTY AND GUARANTEES

A. Refer to Section 01740.

B. Certifications: The Contractor shall furnish the Engineer with a written certification signed by the manufacturer's representative, in accordance with Section 01650, that the installed equipment:

1. Has been installed per manufacturer's requirements.
2. Has been lubricated per manufacturer's instructions.
3. Has been accurately aligned and proper running clearance set.
4. Is free from undue stress imposed by piping or mounting bolts.
5. Suction lines and seal water lines have been flushed and all debris removed prior to startup.
6. Is ready to be operated on a continuous basis, and is free from any known defects.

C. The nominal nameplate horsepower rating for the motors at their rated speed shall not be exceeded by the driven equipment at any point of operation on its characteristics curve.

PART 2 - PRODUCTS

2.01 GENERAL

A. The equipment covered by these Specifications shall be designed, constructed, and installed in accordance with the best practice and methods.

B. All parts shall be so designed and proportioned as to have liberal strength and stiffness, and to be especially adapted for the work to be done. Ample room and facilities shall be provided for inspection, repairs and adjustment.

C. Pump bases shall be rigidly and accurately anchored into position, precisely leveled and aligned, so that the completed installation is free from stress or distortion. All necessary foundation bolts, plates, nuts and washers shall be furnished and installed by the Contractor and conform to the recommendations and instructions of the equipment manufacturer. Anchor bolts, nuts, and washers shall be stainless steel unless noted otherwise. Grouting under bases after the equipment is set is included.
as work under this Section. Pumps and pump bases shall have adequate provisions to collect drainage and conduct it away to nearest drain.

D. Data Plates:

1. Stainless steel pump nameplates giving the name of the manufacturer, the rated capacity, head, speed and any other pertinent data shall be attached to each pump.

2. Stainless steel motor nameplates giving the name of the manufacturer, serial number, model number, horsepower, speed, voltage, amperes and all other pertinent data shall be attached to each motor.

E. All pumps shall be designed and built for 24 hour continuous service at any and all points within the specified range of operation, without overheating, without cavitation, and without excessive vibration or strain.

2.02 SPARE PARTS (TO BE SUPPLIED IN ACCORDANCE W/MANUFACTURER RECOMMENDATIONS)

PART 3 - EXECUTION

3.01 INSTALLATION

A. Installation of pumping equipment by the Contractor shall be in strict accordance with the respective manufacturer's instructions and recommendations in the locations shown on the Drawings. Installation shall include furnishing the required oil and grease for initial operation. The grades of oil and grease shall be in accordance with the manufacturer's recommendations.

B. The Contractor shall furnish and install 4 ½ inch oil dampened pressure gauges on all pump discharge volutes with isolators and isolation valves. Where it is not practical to mount pressure gauges on pump volutes, gauges shall be mounted in the discharge piping. See Division 15.

3.02 SHOP PAINTING

A. Shop Painting is specified in Division 9.

3.03 FIELD PAINTING

A. Field painting is specified under Section 09900.

B. All nameplates shall be properly protected during painting.

3.04 INSPECTION AND TESTING
A. After all pumps have been completely installed the Contractor shall conduct, in the presence of the Engineer, field tests to indicate that pump efficiency and discharge conform to the Specifications. Field tests shall include all pumps included under this Division. The Contractor shall supply all oil, grease, electric power, water, wastewater, chemical solutions and all other material necessary to complete the field tests.

B. If the pump performance does not meet the Specifications, corrective measures shall be immediately taken by the manufacturer, or pumps shall be removed and replaced with pumps which satisfy the conditions specified, without cost to the Owner.

C. The components of each seal lubricating system shall be completely tested by the Contractor in the presence of the Engineer. Any component parts which are damaged as a result of testing or which fail to meet requirements of this Specification shall be replaced, reinstalled and retested at the Contractor's expense.

D. The pumps and motors shall be designed and constructed to avoid the generation of objectionable noise or vibration. The sound pressure level at full load shall not exceed 85 (A Scale) decibels above 300 cycles when measured at a point not exceeding 5 feet from the motor. Mufflers or external baffles will not be accepted. When operating at any point or vertical plane at the top of the motor shall not exceed hydraulic institute standards.

E. Field Testing:

1. Upon completion of all the mechanical work, the Contractor shall conduct testing as specified herein to demonstrate that the equipment performs in accordance with all specifications.

2. The Contractor shall perform initial testing of the equipment insuring to himself that the tests listed in the Demonstration Test paragraph below can be completed.

3. The Demonstration Test shall demonstrate that all items of these Specifications have been met by the equipment, as installed, and shall include the following tests.

 a. That the pumps can deliver specified pressure and quantity at rated efficiency.

 b. That the pump controls perform satisfactorily (where pump control combinations are supplied).

4. In the event that the equipment does not meet the Demonstration Test, the Contractor shall, at his own expense, make such changes and adjustments in the equipment which he deems necessary and shall conduct further tests until written certification is received from the Engineer.
5. The data shall include the following:
 a. A vibration survey
 b. Motor current and amp load
 c. Certified alignment

END OF SECTION
SECTION 11320A
COLLECTION SYSTEM SUBMERSIBLE PUMPS

PART 1 - GENERAL

1.01 WORK INCLUDED

A. The work included under this Section consists of furnishing submersible pumps, motors, and related equipment for the pump station as shown on the Drawings and specified herein. The station shall be fully tested, complete and in operating condition.

1.02 QUALITY ASSURANCE

A. Unit Integrity: The pumps, motors, lifting cables and guide bars shall be supplied by the pump supplier to insure unit integrity.

B. Pump Tests: The pump supplier shall perform the following tests on each pump before shipment from the supplier:

1. Megger the pump for insulation breaks or moisture.
2. Prior to submergence, the pump shall be run dry and be checked for correct rotation.
3. Pump shall be run in a submerged condition.
4. Pump shall be removed from test tank and meggered immediately for moisture.
5. A written certified test report giving the above information shall be supplied with each pump at the time of shipment.
6. All end of pump cables will then be fitted with a rubber shrink fit boot to protect cable prior to electrical installation.

C. Guaranteed Parts Stock Program: The pump supplier shall have a guaranteed parts stock program in the State of Florida. These parts shall include at least one set of spare parts as listed below for each pump supplied on this contract. If the pump supplier does not have a published guaranteed part stock program, the contractor shall furnish the specified spare parts for each pump:
1.03 SUBMITTALS

A. Shop Drawings: The Contractor shall submit detailed and dimensioned working shop drawings showing the construction of the proposed facility and installation of all equipment complete in every respect. Each drawing shall be indexed and/or referenced to the Contract Drawings and Specifications. No work upon the manufacture or fabrication of any equipment shall be performed until the Engineer's approval has been obtained. The Contractor shall submit, with the certified pump shop drawings, layout drawings showing exact installation, piping and foundation details for the pumping units being submitted.

1.04 WARRANTY

A. The pump manufacturer shall provide a prorated warranty against defects in workmanship and materials for a period of five (5) years under normal use, operation and service. The warranty shall be in published form and apply to all similar units.

PART 2 - PRODUCTS

2.01 MATERIALS

A. All metal components in the wet well, with the exception of the pumps, motors and station piping, shall be type 316 L stainless steel.

2.02 PUMPS

A. The Contract shall furnish and install motor driven totally submersible sewage pumps manufactured to meet the following requirements:
B. Pump Design: Pumps shall be capable of handling raw, unscreened sewage. The design shall be such that pumping units will be automatically connected to the discharge piping when lowered into place on the discharge connection. The pumps shall be easily removable for inspection or service, requiring no bolts, nuts or other fastenings to be removed for this purpose and no need for personnel to enter wet well. Each pump shall be fitted with a 316L stainless steel cable of adequate strength and length to permit raising the pump for inspection and removal.

C. Pump Construction:

1. The stator casing, oil casing and impeller shall be of grey iron construction, with all parts coming into contact with sewage protected by PVC epoxy primer with a chloric rubber paint finish. All external bolts and nuts shall be of 304 stainless steel. A wear ring designed for abrasion resistance shall be installed at the inlet of the pump to provide protection against wear to the impeller. The impeller shall be of a single vane, non-clog design, capable of passing minimum 3" diameter solids, fibrous material, and heavy sludge and constructed with long throughway with no acute turns.

2. Each pump shall be provided with a tandem double mechanical seal running in an oil reservoir, composed of two (2) separate lapped face seals, the lower consisting of one (1) stationary and one (1) rotating tungsten carbide ring, the upper consisting of one (1) stationary tungsten carbide ring and one (1) rotating carbon ring, with each pair held in contact by a separate spring. The seals shall require neither maintenance nor adjustment and shall be easily replaceable. Conventional double mechanical seals with single or double spring between the rotating faces, requiring constant differential pressure to effect sealing and subject to opening and penetration by pumping forces shall not be considered equal to the tandem steel specified and required.

3. A sliding guide bracket shall be an integral part of the pumping unit and the pump casing shall have a machined connecting flange to connect with the cast iron discharge connection, which shall be bolted to the floor of the pump chamber and so designed as to receive the pump connecting flange without the need of any bolts or nuts.
4. Sealing of the pumping unit to the discharge connection shall be accomplished by a simple linear downward motion of the pump with the entire weight of the pumping unit guided by no less than two (2) 316 L stainless steel guide bars to and pressing tightly against the discharge connection; no portion of the pump shall bear directly on the floor of the sump and no rotary motion of the pump shall be required for sealing. Sealing at the discharge connection by means of a diaphragm, O-ring or similar method of sealing will not be acceptable as an equal to a metal contact of the pump discharge and mating discharge connection specified and required.

D. Pump Motor: The pump motor shall be housed in an air filled watertight casing and shall have Class F insulated windings which shall be moisture resistant. The temperature at any point in the windings shall not exceed 155°C at any load which could be imposed by the pump at any point on its curve. The motor shall be provided with over temperature sensors set at 125°C and shall be NEMA Design B. Pump motors shall have cooling characteristics suitable to permit continuous operation, in a totally, partially or nonsubmerged condition. The cable entrance seal shall be provided by a compression fitting; epoxy fill will be unacceptable which can crack when alternately heated and cooled or can make cable replacement difficult. Cable junction box and motor shall be separated by a stator lead sealing gland or terminal board which shall isolate the motor from any water or solids gaining access through pump top. The pump shall not load the motor beyond its nominal (nameplate) rating at any point on the pump curve.

E. Cable: Pump motor cable shall be suitable for submersible pump applications and the rating shall be permanently embossed on the cable. Cable sizing shall conform to NEC requirements for the full load currents of the pump motors.

PART 3 - EXECUTION

3.01 INSTALLATION

A. All materials and equipment shall be installed as shown on the drawings and as recommended by the manufacturer.

3.02 FIELD QUALITY CONTROL

A. Field Tests: A qualified representative of the pumping system supplier shall inspect the installation and supervise start-up performed by the contractor’s personnel. All components of the system shall be tested for proper operation during the start-up operation. Pump testing procedures shall be in accordance with the Requirements of specification Section 11210.

B. Maintenance Procedures: After the equipment has been placed into operation, the qualified representative of the pump system supplier shall instruct the Owner’s personnel in proper operating and maintenance procedures without additional cost to the Owner.
END OF SECTION
SECTION 13300

INSTRUMENTATION AND CONTROLS

PART 1 - GENERAL

1.01 WORK INCLUDED

A. Furnish and Install all instrumentation and controls hereinafter specified to perform the intended function. Work shall include all labor, materials, plant facilities and equipment, performance of all work necessary to complete the manufacturer, to make factory tests, to prepare and load for shipment, to deliver to the site, to provide programming, calibration, installation supervision, system start-up, services and incidentals required to completely furnish and install a control system as specified herein and shown on the Contract Drawings.

B. All equipment, materials, programming, and services hereinafter termed "the system", shall be integrated by the process instrumentation control system integrator (PICS) who, with the contractor, shall coordinate and have responsibility for interconnecting with equipment now existing and/or being installed under this or other contracts as shown on the drawings and loop diagrams. The PICS for this project is Rocha Controls, Tampa, FL.

C. Auxiliary and accessory devices necessary for system operation or performance such as transducers or relays to interface with existing equipment or equipment provided under other sections of this Specification shall be included whether specified or not.

D. Attention is directed to the fact that the Instrumentation and Control System shall be furnished by a single pre-qualified system integrator who shall provide all of the services, equipment and appurtenances required to achieve a fully integrated and operational system. To facilitate the owner's future operation and maintenance, products shall be of the same major instrumentation manufacturer with panel mounted devices of the same type and model as far as possible.

E. Substitutions on functions or equipment specified will not be acceptable. In order to ensure the interchangeability of parts, the maintenance of quality, the ease of interfacing between the various sub-systems and the establishment of minimums with regard to ranges and accuracy, strict compliance with the above requirements shall be maintained. In order to ensure compatibility between all equipment, it shall be the responsibility of the system supplier hereunder to coordinate all interface requirements with existing equipment and with mechanical and electrical system suppliers and furnish any signal isolation devices that might be required.
F. Equipment shall be fabricated, assembled, installed, and placed in proper operating condition in full conformity with detail drawings, specifications, engineering data, instructions, and recommendations of the equipment manufacturer as approved by the Engineer.

G. Equipment removed in the course of this work shall become the property of the owner.

H. All equipment and installations shall satisfy applicable national, state and local mechanical and electrical codes.

1.02 QUALIFICATIONS

A. The Contractor shall use only the approved system suppliers and must name his proposed system suppliers on the bid document.

1.03 SUBMITTALS

A. Following award of contract, shop drawings shall be submitted as outlined under the General Conditions and as described herein. Submittals shall be complete giving at least equipment specifications, details of connections, wiring, range, and dimensions. Submittals consisting of only general sales literature shall not be acceptable.

B. Submit detailed information for each instrument or control device including manufacturer's descriptive literature and a specific data sheet for each device and its configuration which shall include as a minimum.

1. Tag number per the loop diagrams.

2. Product (item) name used herein and on the contract drawings.

3. Manufacturer's complete model number.

4. Location of the device.

5. Input/Output characteristics.

6. Range, size, and graduations.

7. Physical size with dimensions, enclosure NEMA classification and mounting details.

8. Materials of construction of all components.

9. Instrument or control device sizing calculations, where applicable.
10. Certified calibration data on all flow metering devices.

11. Accuracy, resolution, hysteresis, and frequency response.

C. Submit a detailed loop diagram on a single eight and one-half inch by 11 inch (8-1/2" x 11") sheet for each monitoring or control loop. The format shall be the Instrument Society of America Standard for Instrument Loop Diagrams, ISA-S5.4. Each wire shall be shown with all terminations as part of the loop diagram. Terminations furnished under other sections of this Specification shall be shown and completely identified on the as-built drawings in the submittal. The loop diagrams shall use the same numbers as used herein.

D. Submit detailed ladder diagrams of the relay and switch. The ladder diagram format shall be the same for all processes, systems, sub-systems, and equipment. Diagram formats differing based on different manufacturers will not be accepted. Rungs of the ladders shall be cross-referenced. All functions shall be annotated and cross-referenced to loop drawings.

E. The data sheets shall be provided with an index and proper identification and cross-referencing. There shall be separate volumes for field/panel and in-line equipment. The in-line equipment shall be coordinated with the piping work. The detailed loop diagrams shall accompany the field/panel instrument submittal. Each volume shall be submitted in its entirety. Partial submittals will be rejected.

F. Submit detailed drawings concerning control panels and/or enclosures including:

1. Cabinet assembly and layout drawings to scale.

2. Fabrication and painting specifications.

3. Color selection samples for selection by the Engineer.

4. Point to point wiring diagrams depicting wiring within the panel as well as connections to external devices.

5. Where graphic screen displays are required, submit detailed color screen print displays including symbols icons and line widths, as well as color selection samples and details of fabrication.

G. Exceptions to the Specifications or drawings shall be clearly defined by the system supplier. Data shall contain sufficient details so a proper evaluation may be made by the Engineer.
1.04 FINAL DOCUMENTATION

A. Prior to final acceptance of the system, eight (8) sets of Operating and Maintenance manuals covering instructions and maintenance on each type of equipment shall be furnished as noted herein.

B. The instructions shall be bound in three-ring binders with drawings reduced or folded for inclusion and shall provide at least the following as a minimum.

1. A comprehensive index.

2. A complete "As Constructed" set of approved shop drawings.

3. A complete list of the equipment supplied including serial number, ranges, and pertinent data.

4. Full specifications on each item.

5. System schematic drawings "As Constructed" illustrating all components, piping and electrical connections of the systems supplied under this section.

6. Detailed service, maintenance and operation instructions for each item supplied.

7. Special maintenance requirements particular to this system shall be clearly defined, along with special calibration and test procedures.

8. The operating instructions shall also incorporate a functional description of the entire system with references to the system's schematic drawings and instructions.

9. Complete parts lists with stock numbers and name, address and telephone number of the local supplier.

1.05 SOURCE QUALITY CONTROL

A. The manufacturers of the equipment and fabricators of panels and/or cabinets supplied under this section shall allow the engineer and/or owner to inspect and witness the testing of the equipment at the site of fabrication. Equipment shall include the cabinets, special control systems and other pertinent systems and/or devices. A minimum of 10 working days notification shall be provide to the Engineer prior to testing. No shipments shall be made without the Engineer's approval.
1.06 PRODUCT HANDLING

A. Shipping Precautions

1. After completion of shop assembly, factory test and approval all equipment, cabinets, panels, and consoles shall be packed in protective crates and enclosed in heavy duty polyethylene envelopes or secured sheeting to provide complete protection from damage, dust, and moisture. Dehumidifiers shall be placed inside the polyethylene coverings. The equipment shall then be skid-mounted for final transport. Lifting rings shall be provided for moving without removing protective covering. Boxed weights shall be shown on shipping tags together with instructions for unloading, transporting, storing and handling at jobsite.

2. Special instructions for proper field handling, storage and installation required by the manufacturer for proper protection shall be securely attached to each piece of equipment prior to packaging and shipment.

B. Identification

1. Each component shall be tagged to identify its location, tag number and function in the system. Identification shall be prominently displayed on the outside of the package.

2. A permanent stainless steel or other non-corrosive material tag firmly attached and permanently and indelibly marked with the instrument tag number as given in the tabulation, shall be provided on each piece of equipment supplied under this section.

C. Storage

1. Equipment shall not be stored outdoors. Equipment shall be stored in dry permanent shelters and shall be adequately protected against mechanical and corrosive damage. If any apparatus has been damaged, such damage shall be repaired by the Contractor at his own cost and expense. If any apparatus has been subject to possible injury by water, it shall be thoroughly dried out and put through such tests as directed by the Engineer. This shall be at the cost and expense of the Contractor or the apparatus shall be replaced by the Contractor at his own expense.

PART 2 - PRODUCTS

2.01 INSTRUMENTATION

A. All instrumentation supplied shall be of the manufacturer's latest design and shall produce or be activated by signals which are established standards for the water and wastewater industries.
B. All electronic instrumentation shall be of the solid state type and shall utilize transmission signals which conform to all FCC and local requirements.

C. Outputs of equipment that are not of the standard signals as outlined shall have the output immediately converted to compatible standard signal as for remote transmission.

D. All instruments shall be provided with mounting hardware and floor stands, wall brackets or instrument racks as shown on the drawings, or as required.

E. Equipment installed in a hazardous area shall meet Class, Group and Division as shown on the contract electrical drawings to comply with the National Electrical Code.

F. All indicators and readouts shall be linear in process units.

G. Electronic equipment shall be of the manufacturer's latest design utilizing printed circuitry and suitably coated to prevent contamination by dust, moisture, and fungus. Solid state components shall be conservatively rated for their purpose to assure optimum long-term performance and dependability over ambient atmospheric fluctuations and 0 and 100 percent relative humidity. The field mounted equipment and system components shall be designed for installation in dusty, humid, and slightly corrosive service conditions.

H. All equipment, cabinets and devices furnished hereunder shall be heavy-duty type designed for continuous industrial service. The system shall contain products of a single manufacturer, insofar as possible, and shall consist of equipment models which are currently in production. All equipment provided shall be of modular construction and shall be capable of field expansion.

I. All electronic equipment shall be provided with radio frequency interference protection.

2.02 ELECTRICAL

A. All equipment shall be designed to operate on a 60 hertz alternating current power source at a nominal 110 volts plus or minus 10 percent (±10%), except where specifically noted. All regulators and power supplies required for compliance with the above shall be provided between power supply and interconnected instrument loop. Where equipment requires voltage regulation, constant voltage transformers shall be supplied.

B. All analog transmitter and controller outputs shall be 4-20 milliamps into a minimum load range of 0-750 ohms, unless specifically noted otherwise. All switches shall have double pole, double throw contacts rated at a minimum of 600 VA, unless specifically noted otherwise. Material and equipment used shall be UL approved wherever such approved equipment and materials are available. All equipment shall be designed and constructed so that in the event of a power interruption, the
equipment specified hereunder shall resume normal operation without manual resetting when power is restored. UPS System shall be provided under this Division for control panel (CP). Refer to Division 16 Specifications for UPS requirements.

2.03 LIGHTNING/SURGE PROTECTION

A. General

1. Lightning/surge protection shall be provided to protect the electronic instrumentation system from induced surges propagating along the analog and discrete signal and power supply lines. The protection systems shall be such that the protection level shall not interfere with normal operation, but shall be lower than the instrument surge withstand level and be maintenance-free and self-restoring. Instruments shall be housed in a suitable metallic case, properly grounded. Ground wires for all surge protectors shall be connected to a good earth ground and where practical, each ground wire run individually and insulated from each other. These protectors shall be mounted within the instrument enclosure or a separate NEMA 4X junction box coupled to the enclosure. The units shall be as manufactured by Innovation Technologies or approved equal.

B. Power Supply

1. Protection of all alternating current (AC) instrument power supply lines shall be provided. Cabinet(s)/panel(s) and groups of field instruments, as approved by the Engineer, shall be protected by isolation transformers and surge suppressors. Individual field instruments shall be protected by individual gas tube surge suppressors.

C. Signal Line

1. Protection of all field analog, discrete, digital, and telemetered signal lines shall be provided. Protection devices shall be installed at both ends and as close to the instrument being protected as possible. Where signal lines enter control rooms through an interface cabinet, the protection devices shall be mounted in the interface cabinet.

D. Warranty

1. A five (5) year warranty shall be provided by the surge/lightning suppression equipment manufacturer. The warranty shall cover the replacement of all protected equipment for a period of five (5) years after the date of acceptance.
PART 3 - EXECUTION

3.01 GENERAL INSTALLATION

A. Instrumentation and accessory equipment shall be installed in accordance with the manufacturer's instructions. The locations of equipment, transmitters, alarms, and similar devices shown on the drawing are approximate only. Exact locations shall be as approved by the Engineer during construction.

B. Obtain in the field all information relevant to the relevant to the placing of process control work and in case of any interference with other work, proceed as directed by the Engineer and furnish all labor and materials necessary to complete the work in an approved manner.

C. The instrumentation loop diagrams indicate the intent of the interconnections between the individual instruments. Any exceptions should be noted.

D. The installation details on the drawings indicate the designed installation for the equipment specified. Where specific installation details are not specified or shown on the drawings, the American Petroleum Institute (API) Recommended Practice 550 shall be followed as applicable.

E. All work shall be executed in full accordance with codes and local rulings. Should any work be performed contrary to said rulings, ordinances and regulations, the Contractor shall bear full responsibility for such violations and assume all costs arising therefrom.

F. All equipment used in areas designated as hazardous shall be designed for the Class, Group and Division as required on the electrical drawings for the locations. All installation shall be in strict accordance with codes.

G. Unless specifically shown in the contract documents, direct reading or electrical transmitting instrumentation shall not be mounted on process piping. Instrumentation shall be mounted on instrument racks or stands as detailed on the installation detail drawings. All instrumentation connections shall be provided with shut-off and drain valves. For the differential pressure transmitters, three-way stainless steel valve manifolds shall also be provided. For slurries, chemical or corrosive fluids diaphragm seals with flushing connections shall be provided.

H. All piping to and from field instrumentation shall be provided with necessary unions, test tees, couplings, adapters and shut-off valves.

I. Field instruments requiring power supplies shall be provided with local electrical shut-offs and fuses as required.

J. Brackets and hangers required for equipment mounting shall be provided. They shall be installed in a workmanlike manner and not interfere with any other equipment.
K. The system supplier shall investigate each space in the building through which equipment must pass to reach its final location. If necessary, the system supplier shall be required to ship his material in sections sized to permit passing through restricted areas in the building. The system supplier shall also investigate and make any field modifications to the allocated space for each cabinet, enclosure, and panel to assure proper space and access (front, rear, side).

L. The shield on each process instrumentation cable shall be continuous from source to destination and be grounded as directed by the manufacturer of the instrumentation equipment, but in no case, shall more than one ground point be employed for each shield.

M. Lifting rings from cabinets/assemblies shall be removed. Hole plugs shall be provided for the holes of the same color as the cabinet.

3.03 INSTALLATION

A. The system supplier shall coordinate the installation, placing and location of system components, their connections to the process equipment panels, cabinets, and devices subject to the Engineer's approval. He shall be responsible to ensure that all field wiring for power and signal circuits are correctly done in accordance with best industry practice and provide for all necessary system grounding to insure a satisfactory functioning installation. The Contractor hereunder shall schedule and coordinate his work under with that of the electrical work specified under applicable sections Division 16.

3.04 TESTS

A. The Contractor shall furnish the services of the system supplier's servicemen, all special tools, calibration equipment and labor to perform the tests. Certified copies of the tests shall be furnished in duplicate to the Engineer.

B. Following connections, check-out and final adjustment of all panels, instruments, meters, monitoring and control devices, a performance check shall be made on each. Analog instruments and system inputs shall be tested at 0 percent (0%), 25 percent (25%), 50 percent (50%), 75 percent (75%), 100 percent (100%), and 1,001 percent (1,001%) of scale, as required. All status and alarm switches as well as all monitoring and control functions shall also be checked. Each device on the loop/logic diagrams must be signed off by the Engineer as being acceptable. Testing shall be done from the signal source (transmitter) to the Data Acquisition and Process Control System including all field wiring.

C. If, during running of the tests one or more points appear to be out by more than the specified amount, the system supplier's servicemen shall make such adjustments or alterations as are necessary to bring equipment up to Specification performance. Following such adjustment, the tests shall be repeated for all specified points to insure compliance.

3.05 INSTRUCTION
A. The Contractor shall furnish a system supplier's representative for a field training program to be run at the owner's plant site and consist of up to two (2) days instruction for two (2) of the owner's personnel. The program shall cover instrumentation debugging, troubleshooting, calibration and maintenance procedures and system operation. This training program will be held at a time chosen by the owner and will be exclusive of any instruction given at the time of system start-up.
SECTION 13360
PROCESS INSTRUMENTATION AND CONTROL SYSTEM
FIBER OPTIC NETWORK

PART 1 - GENERAL

1.01. SCOPE OF WORK

A. Work includes furnishing, installing, and testing, fiber optic cable links as defined in the Contract Drawings.

B. The SYSTEM SUPPLIER defined in Specification Section 13300 shall be responsible for coordinating all aspects of the fiber optic system.

C. All duct bank installation work covered by this specification shall be performed by a SUB-CONTRACTOR experienced in fiber optic cable installation.

D. It is the ultimate responsibility of the Contractor to furnish a complete and fully operable system that supports the required functions specified elsewhere. The Contractor is to assume full responsibility for additional costs which may result from unauthorized deviations from the specifications.

E. Equipment found to be defective prior to system acceptance shall be replaced and installed at no additional cost to the OWNER.

1.02. SUBMITTALS

A. Shop Drawings: Submit, in a single package, catalog information, descriptive literature and drawings for all components of the fiber optic system.

B. Installation Procedure: Submit the procedure proposed to be followed during duct bank cable pulls. The procedure shall include data sheets to be used to record cable pull lengths and the attenuation readings before and after installation as defined in Part 3 herein. Conduits shall have 3 foot minimum radius.

C. Test Procedures: Submit the procedure to be followed during testing before and after installation, and after termination. Submit the supervising technician information. The supervising technician shall have BICSI qualifications.

1.03. FINAL DOCUMENTATION

A. Provide a complete wiring diagram of the entire fiber optic system including termination numbers at all fiber patch panels.

B. Distances and installed attenuation of all fiber runs within the duct bank system.
C. Provide a hard copy of all final documentation and also in electronic format on a Compact Disk.

PART 2 - PRODUCTS

2.01. FIBER OPTIC CABLE

A. Provide fiber optic cable for implementing the fiber links required within the system.

B. Duct Bank Cable. The fiber optic cable within the duct bank system shall also meet the following requirements:

1. 8.2 micron 10GB @ 1310nm / 1383 nm / 1550 nm single-mode OS2 fiber.

2. 6 strands of fiber, unless otherwise noted in the Contract Drawings.

3. Indoor/outdoor rated for underground duct bank installation.

4. All dielectric fully waterblocked loose tube, gell-free design with Fast Acess technology for easy access and no clean up.

5. SZ-stranded, loose tube design.

6. PE outer jacket.

7. Manufacturer: Corning Altos Series.

8. Meets the requirements of Telcordia GR-20, Issue 3 and ANSI/ICEA S-87-640.

9. Free of hazardous substabces according to RoHS 2002/95/EG.

C. Fiber optic cable within buildings shall also meet the following requirements:

1. Non-conductive, plenum rated.

2. Type OFNP (Optical Fiber Nonconductive Plenum).

3. PVDF outer jacket.

4. Manufacturer: Belden, Corning or approved equal.

2.02. FIBER PATCH PANELS

A. Fiber patch panels (FPP) shall be provided (unless existing) where at all locations where fiber optic cable enters a building.

B. FPP located outside shall be NEMA 4X 316 Stainless Steel lockable enclosures.
C. FPP located indoors shall be NEMA 12 steel lockable enclosures.

D. FPP shall contain one or more housings with sufficient quantities of (LC-type) compatible adaptor panels to accommodate all fibers terminating within the FPP. This requirement includes all fibers.

E. The housing shall be equipped with strain relief for the cables and shall have a lockable access door.

F. Provide Siecor WCH housing with CCH connector panels, Superior, Hubbell, or approved equal.

G. Rack-Mounted systems shall have rack mounted cable management panels with patch panels, cable management, and vertical wireways.

PART 3 - EXECUTION

3.01. INSTALLATION

A. Install materials and equipment in a workmanlike manner utilizing craftsmen skilled in the particular trade. Provide work which has a neat and finished appearance. Coordinate the work with the OWNER and work of other trades to avoid conflicts, errors, delays, and unnecessary interference with operation of the existing plant during construction.

B. Install suitably sized innerduct in all duct bank conduits. Exposed innerduct shall be labeled with fiber optic warning labels where they enter the duct bank and every three feet in between.

C. All conduit within buildings shall be labeled every six feet with fiber optic warning labels.

D. All cables within fiber patch panels shall be clearly labeled with destination.

E. Install all duct bank fiber cable runs in accordance with the manufacturers recommendations and including:
 1. Use manufacturer approved cable lubricant.
 2. Use a pulling winch that continuously monitors and records the pull tension.
 3. Note from the distance markers on the cable the exact length of each installed run and record the information.

F. All pulling equipment and hardware that will contact the cable shall be sized to maintain the cable’s minimum bend radius.
G. Do not utilize a figure-of-eight machine for installation without prior written confirmation of compatibility from both the machine and cable manufacturer.

3.02. TESTING

A. Measure the attenuation of the fiber optic cable prior to installation and determine the average attenuation per foot.

B. Following installation, measure the attenuation of each run and compare the attenuation per foot readings with those taken prior to installation. Replace any runs whose attenuation per foot reading is more than 10% higher than the pre-installation value.

C. Provide all special testing materials and equipment.

D. Coordinate all testing with the CONTRACTOR, the ENGINEER, all affected suppliers, and the OWNER.

E. The ENGINEER reserves the right to test or retest any and all specified functions whether or not explicitly stated in the approved test procedures. The ENGINEER's decision shall be final regarding the acceptability and completeness of all testing.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and the Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following basic mechanical materials and methods to complement other Division 15 Sections.

1. Piping materials and installation instructions common to most piping systems.

2. Concrete equipment base construction requirements.

3. Labeling and identifying mechanical systems and equipment is specified in Division 15 Section 15190 "Mechanical Identification."

4. Non-shrink grout for equipment installations.

5. Installation requirements common to equipment specification Sections.

6. Touchup painting and finishing.

B. Pipe and pipe fitting materials are specified in piping system Sections.

1.03 QUALITY ASSURANCE

A. Equipment Selection: Equipment of greater or larger power, dimensions, capacities, and ratings may be furnished provided such proposed equipment is approved in writing and connecting mechanical and electrical services, circuit breakers, conduit, motors, bases, and equipment spaces are increased. No additional costs will be approved for these increases, if larger equipment is approved. If minimum energy ratings or efficiencies of the equipment are specified, the equipment must meet the design requirements and commissioning requirements.
1.04 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end-caps. Maintain end-caps through shipping, storage, and handling to prevent pipe-end damage and prevent entrance of dirt, debris, and moisture.

B. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. When stored inside, do not exceed structural capacity of the floor.

C. Protect flanges, fittings, and piping specialties from moisture and dirt.

D. Protect stored plastic pipes from direct sunlight and support to prevent sagging and bending.

1.05 SEQUENCING AND SCHEDULING

A. Coordinate mechanical equipment installation with other building components.

B. Arrange for chases, slots, and openings in building structure during progress of construction to allow for mechanical installations.

C. Coordinate the installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

D. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning prior to closing in the building.

E. Coordinate connection of electrical services.

F. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

G. Coordinate installation of identifying devices after completing covering and painting where devices are applied to surfaces.

PART 2 - PRODUCTS

2.01 PIPE AND PIPE FITTINGS

A. Refer to individual piping system specification Sections for pipe and fitting materials and joining methods.
Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.02 JOINING MATERIALS

A. Refer to individual piping system specification Sections in Division 15 for special joining materials not listed below.

B. Solder Filler Metal: ASTM B 32.
 1. Alloy Sn95 or Alloy Sn94: Tin (approximately 95 percent) and silver (approximately 5 percent), having 0.10 percent lead content.
 2. Alloy E: Tin (approximately 95 percent) and copper (approximately 5 percent), having 0.10 percent maximum lead content.
 3. Alloy HA: Tin-antimony-silver-copper-zinc, having 0.10 percent maximum lead content.
 4. Alloy HB: Tin-antimony-silver-copper-nickel, having 0.10 percent maximum lead content.
 5. Alloy Sb5: Tin (95 percent) and antimony (5 percent), having 0.20 percent maximum lead content.

2.03 PIPING SPECIALTIES

A. Sleeves: The following materials are for wall, floor, slab, and roof penetrations:
 2. Polyethylene: Type 1 polyethylene Class A or C material, Grade E-1 with film characteristics of: 1200 psi tensile strength, 300 percent elongation, 800 volt/mil, 8 mil thickness.

2.04 GROUT

A. Non-shrink, Nonmetallic Grout: ASTM C 1107, Grade B.
 2. Design Mix: 5000 psi, 28-day compressive strength.
3.01 PIPING SYSTEMS COMMON REQUIREMENTS

A. General: Install piping as described below, except where system Sections specify otherwise. Individual piping system specification Sections in Division 15 specify piping installation requirements unique to the piping system.

B. General Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate general location and arrangement of piping systems. Install piping as indicated, except where deviations to layout are approved on coordination drawings.

C. Install components having pressure rating equal to or greater than system operating pressure.

D. Install piping in concealed interior and exterior locations, except in equipment rooms and service areas.

E. Install piping free of sags and bends.

F. Install exposed interior and exterior piping at right angles or parallel to building walls. Diagonal runs are prohibited, except where indicated.

G. Install piping tight to slabs, beams, joists, columns, walls, and other building elements. Allow sufficient space above removable ceiling panels to allow for ceiling panel removal.

H. Install piping to allow application of insulation plus 1-inch clearance around insulation.

I. Install fittings for changes in direction and branch connections.

J. Install polyethylene sleeve on all uninsulated copper tube when it is buried, below concrete slab, when it penetrates slab, or when it is in contact with ferrous metal, concrete, or masonry materials.

K. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, concrete floor and roof slabs, and where indicated.

1. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

2. Build sleeves into new walls and slabs as work progresses.
3. Install large enough sleeves to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

a. PVC Pipe Sleeves: For pipes smaller than 12 inches, but not in fire-rated assemblies.

4. Seal annular space between sleeve and pipe or pipe insulation, using elastomeric joint sealants.

L. Verify final equipment locations for roughing in.

M. Refer to equipment specifications in other Sections for roughing-in requirements.

N. Piping Joint Construction: Join pipe and fittings as follows and as specifically required in individual piping system Sections.

1. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

2. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

3.02 EQUIPMENT INSTALLATION--COMMON REQUIREMENTS

A. Install equipment to provide the maximum possible headroom where mounting heights are not indicated.

B. Install equipment according to approved submittal data. Portions of the Work are shown only in diagrammatic form. Refer conflicts to the Architect.

C. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, except where otherwise indicated.

D. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to an accessible location.

E. Install equipment giving right-of-way to piping systems installed at a required slope.
3.03 PAINTING AND FINISHING

A. Refer to Division 9 Section "Painting" for field painting requirements.

B. Damage and Touch Up: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.04 CONCRETE BASES

A. Construct concrete equipment bases of dimensions indicated, but not less than 4 inches larger than supported unit in both directions. Follow supported equipment manufacturer's setting templates for anchor bolt and tie locations. Use 3000-psi, 28-day compressive strength concrete and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete."

3.05 GROUTING

A. Install nonmetallic non-shrink grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors. Mix grout according to manufacturer's printed instructions.

B. Clean surfaces that will come into contact with grout.

C. Provide forms for placement of grout, as required.

D. Avoid air entrapment when placing grout.

E. Place grout to completely fill equipment bases.

F. Place grout on concrete bases to provide a smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout according to manufacturer's printed instructions.

END OF SECTION
SECTION 15100

PROCESS AND UTILITY PIPING, FITTINGS, VALVES AND ACCESSORIES

PART 1 - GENERAL

1.01 DESCRIPTION

A. Scope of Work: The work included in this Section consists of furnishing all labor, equipment and materials and in performing all operations necessary for the construction or installation of all process and utility piping, valves, valve boxes and all castings and appurtenances within, complete and ready for operation as shown on the Drawings and specified herein.

1.02 QUALITY ASSURANCE

A. Construction Requirements:

1. All underground lines shall be installed with at least 30 inches of cover or as detailed on the drawings.

2. For underground utilities changes in pipe alignment and use of fittings may be allowed, subject to approval of the Engineer as to layout. Deflection shall not exceed 80 percent of the maximum allowable deflection as stated in the pipe manufacturer's installation instructions.

B. Pipe Inspection:

1. The Contractor shall obtain from the pipe manufacturers a certificate of inspection to the effect that the pipe and fittings supplied for this Contract have been inspected at the plant and that they meet the requirements of these specifications. Certification shall be stamped with corporate seal.

2. All pipe and fitting shall be subject to visual inspection at time of delivery by rail or truck and also just before they are lowered into the trench to be laid. Joints or fittings that do not conform to these specifications will be rejected and must be removed immediately by the Contractor.

3. The entire product of any plant may be rejected when, in the opinion of the Engineer, the methods of manufacture fail to secure uniform results, or where the materials used are such as to produce inferior pipe or fittings.
1.03 SUBMITTALS

A. Shop Drawings:

1. In general six (6) copies of the following shop drawings shall be submitted to the Engineer for approval prior to construction:

a. Mill test certificates or certified test reports on pipe and fittings
b. Details of restrained and flexible joints
c. Valve vaults
d. Valve boxes
e. All gate, plug, ball, solenoid, check valves, and automatic air release valves
f. Couplings
g. Service saddles, curb, & corp stops.
h. Flexible expansion joints
i. Pressure gauges
j. Identification tape
k. Joint lubricant
l. Detailed piping layout drawings and pipe laying schedule
m. Temporary plug and anchorage system for hydrostatic pressure test
n. Tie rods
o. Reduces pressure backflow preventers.

2. A separate shop drawing submittal will be required for each major item listed above and for each different type of an item within a major item. For example, separate submittals will be required for gate, plug, ball, solenoid, check and automatic air release valves. All submittals shall be in accordance with the General Conditions and the Supplementary Conditions.
B. Acceptance of Material:

1. The Contractor shall furnish an Affidavit of Compliance certified by the pipe manufacturer that the pipe, fittings and specials furnished under this Contract comply with all applicable provisions of current AWWA and ASTM Standards and these Specifications. No pipe or fittings will be accepted for use in the work on this project until the Affidavit has been submitted and approved by the Engineer.

2. The Owner reserves the right to sample and test any pipe or fitting after delivery and to reject all pipe and fittings represented by any sample which fails to comply with the specified requirements.

C. Operation and Maintenance Manuals:

1. Submit copies of operation and maintenance manuals for all the items requiring routine maintenance.

1.04 DELIVERY, STORAGE AND HANDLING

A. During shipping, delivering and installing pipe, fittings, valves, backflow preventers, and accessories, they shall be handled in such manner as to ensure a sound undamaged condition.

B. Particular care shall be taken not to damage the pipe coating.

C. Insides of valves and backflow preventers shall be kept free of dirt and debris.

1.05 JOB CONDITIONS

A. Water in Excavation:

1. Water shall not be allowed in the trenches while underground pipes are being laid and/or tested. The Contractor shall not open more than 100' of trench than the available pumping facilities are able to dewater to the satisfaction of the Engineer. The Contractor shall assume responsibility for disposing of all water so as not to interfere with the normal drainage of the territory in which he is working.

2. In no case shall the pipelines being installed be used as drains for such water, and the ends of the pipe shall be kept properly and adequately plugged during construction by the use of approved stoppers and not by improvised equipment. All necessary precautions shall be taken to prevent the entrance of mud, sand, or other obstructing matter into the pipelines. If on completion of the work any such materials have entered the pipelines, it must be cleaned as directed by the Engineer so that the entire system will be left clean and unobstructed.
PART 2 - PRODUCTS

2.01 DUCTILE IRON PIPE AND FITTINGS

A. Ductile Iron Pipe: Ductile iron pipe shall conform to the requirements of ANSI/AWWA C150/A21.50, latest revision. The minimum thickness class for all pipe greater than 12” diameter shall be pressure Class 250, and all pipe 12” or less in diameter shall be pressure Class 350.

Pipe shall have a minimum rated water working pressure of 250 psi and shall be furnished in laying lengths of 20 feet or less, unless specifically shown otherwise on the Drawings. The pipe shall be lined and coated as specified below.

1. Interior Lining for Raw Activated Sludge (RAS), Sludge Lines and Force Mains: Ductile iron fittings and specials shall be coated with 40 mils nominal dry film thickness of Protecto 401 or approved equal in accordance with the manufacturers recommended actions.

2. Interior Lining for Potable and Reclaimed Water Piping: Ductile iron pipe, fittings and specials shall be cement lined in accordance with ASNI/AWWA C104, current revision, "Cement-Mortar Lining for Ductile Iron and Gray Iron Pipe and Fittings for Water". The cement lining shall have a standard thickness and after curing the lining shall have a seal coat of bituminous material in accordance with ANSI/AWWA C104, current revision.

3. Exterior Coatings: The exterior of ductile iron pipe fittings and specials to be installed underground shall be coated at the factory with standard bitumastic coating.

4. Polyethylene Encasement: Where indicated the Contractor shall utilize polyethylene encasement in accordance with ANSI/AWWA C105-T1. The polyethylene shall conform with ASTM-D-1248-68 and be color coded to the service application.

5. Ductile iron pipe, fittings and specials to be installed aboveground shall be furnished with a shop applied primer on the exterior. The shop primer shall be as specified in accordance with manufacturers recommendations.

B. Fittings: Fittings for ductile iron pipe shall be either mechanical joint, restrained joint or flanged joint as indicated on the Drawings and shall have a minimum working pressure of 250 psi. Fittings shall be ductile iron and shall conform to ANSI/AWWA C110, ANSI/AWWA C111 and ANSI/AWWA C153, latest revisions for flanged and mechanical joint pipe. Fittings shall be coated and lined as specified above for ductile iron pipe. The rubber gaskets for flanged, mechanical, and push on joints shall be as described below.

C. Push-On Joints: Pipe using push-on joints shall be in strict accordance with ANSI/AWWA C111, latest revision and shall be as manufactured by American Cast Iron Pipe Company (Fastite Joint), United States Pipe Company (Tyton Joint), or
Clow Corporation (Super Bell Tite Joint). Jointing materials shall be provided by the pipe manufacturer and installation shall be in strict accordance with the manufacturer's recommended practice.

D. Mechanical Joints: Jointing materials for mechanical joints shall be provided by the pipe and fitting manufacturer. Materials assembly and bolting shall be in strict accordance with ANSI/AWWA C111 and ANSI/AWWA C153, latest revisions. Tee head bolts and nuts for mechanical joints shall be manufactured of CORTEN, high strength, low alloy, corrosion resistant steel as manufactured by NSS Industries, Plymouth, Michigan or an equal approved by the Engineer.

E. Flanged Joints: Flanges shall be American Standard for 125 pound steam pressure with any special drilling and tapping as required to insure correct alignment and bolting. Gaskets shall be rubber full face type, minimum thickness of 1/8 inch. Flanged joints shall be made with bolts and nuts, studs with a nut on each end, or studs with nuts where the flange is tapped.

The number of size of bolts shall conform to the same American National Standard as the flanges. Unless noted otherwise, bolts and nuts shall be Grade B conforming to the ASTM Specifications for Steel Machine Bolts and Nuts and Tap Bolts, Designation A 307. Bolts and studs shall be of the same quality as machine bolts. Bolts and nuts shall have hexagonal heads. Where noted on the Drawings or where flanges are underground, stainless steel nuts and bolts shall be used for flanges. Stainless steel shall be Type 316 in accordance with ASTM A320, Class 2.

1. Machined Surfaces: Machined surfaces shall be cleaned and coated with a suitable rust preventative coating at the shop immediately after being machined.

F. Restrained Joints: Restrained joints shall be provided for all buried piping systems at the location required to restrain the system thrust. Pipe joints and fitting shall be restrained as specified below.

1. Manufactured Restrained Joints: Manufactured restrained joints shall be Flex-Ring, Lok-Ring or Lok-Fast manufactured by the American Cast Iron Pipe Company, Lok-Tyte or Tr-Flex Type manufactured by the United States Pipe Company as manufactured by McWane, or an equal approved by the Engineer. Joints shall be manufacturer's standard specifically modified push-on type joints with joint restraint provided by ductile iron retainer rings joined together by corrosion resistant, high strength steel tee head bolts and nuts or with joint restraint provided by a welded on retainer ring and a split flexible ring assembled behind the retainer ring.

Restrained joint pipe and fittings shall be ductile iron only and shall comply with applicable portions of this specification. Manufactured restrained joints shall be capable of deflection during assembly. Deflection shall not exceed 80 percent of the manufacturer's recommendations.
Tee head bolts and nuts for restrained joints shall be manufactured of CORTEN, high strength, low alloy, corrosion resistant steel as manufactured by NSS Industries, Plymouth, Michigan, or an equal approved by the Engineer.

2. Alternate Restrained Joints:

a. When prior approval is obtained from the Engineer, ductile iron pipe and fittings with mechanical joints may be restrained using a follower gland which includes a restraining mechanism. When actuated during installation, the restraining device shall impart multiple wedging action against the pipe wall which increases resistance as internal pressure in the pipeline increases. The pipe must be suitable for use with the proposed device.

The joint shall maintain flexibility after installation. Glands shall be manufactured of ductile iron conforming to ASTM A536 and restraining devices shall be of head treated ductile iron with a minimum hardness of 370 BHN. The gland shall have standard dimension and bolting patterns for mechanical joints conforming to ASNI/AWWA C111 and C153, latest revisions.

Tee head bolts and nuts shall be manufactured of corrosion resistant, high strength, low alloy CORTEN steel in accordance with ASTM A242.

The restraining wedges shall have twist off nuts to insure proper torquing. The mechanical joint restraint device shall have a minimum working pressure rating of 250 psi with a minimum safety factor of 2 to 1 and shall be MEGALUG® as manufactured by EBBA Iron, Inc.. No other retainer gland type device will be acceptable. After installation prior to backfilling, all parts of the joint restraint system shall be coated with coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M.

b. When prior approval is obtained from the Engineer, ductile iron pipe and fittings with push on joints may be restrained using a restraining gasket similar to the "Field Lok" gasket manufactured by U.S. Pipe & Foundry. The device must be suitable for the pipe and pressure rating intended and is subject to approval by the Engineer. The required length of restrained joint pipe shall be provided on either side of all valves and fittings employing restraining devices. Restrained lengths shall be calculated per DIPRA standards based on Type II laying conditions and an operating pressure of 150 psi, unless otherwise indicated.

2.02 POLYVINYL CHLORIDE (PVC) PIPE AND FITTINGS
A. Gravity Drainage Piping: PVC pipe used for gravity drainage piping installed underground shall be SDR 26 pipe. Fittings shall be as specified in Section 02550.
B. Small PVC Pressure Piping: Unless otherwise specified, all PVC pressure pipe smaller than 4 inches nominal diameter shall be Schedule 80 PVC or Endot Endpure HDPE, (as shown). Schedule 80 pipe shall have either solvent welded or threaded joints. PVC pressure pipe shall bear the approved seal of the National Sanitation Foundation (NSF). PVC pipe that is exposed to sunlight shall be manufactured with additives to provide resistance to ultraviolet deterioration. No glued joint pipe shall be installed below ground, unless other specified. All water pipe to be Class 200 (DR 21) gasketed bell and spigot pipe blue in color.

C. Fittings: Socket type, solvent welded fittings for Schedule 80 PVC pipe shall be in conformance with ASTM D2467. Threaded type fittings for Schedule 80 PVC pipe shall be in conformance with ASTM D2464. All solvent welded or threaded joints shall be watertight.

D. Flanges: Flanges for Schedule 80 PVC pipe shall be rated for a 150 psi working pressure with ANSI B16.1 dimensions and bolting pattern. Flanges shall be connected to PVC piping with either solvent welded or threaded joints in accordance with ASTM D2467 or ASTM 2464, respectively. Gaskets shall be neoprene, full faced type with a minimum thickness of 1/8 inch. Nuts and bolts shall be hexagonal with machine threads, manufactured of Type 316 stainless steel in accordance with ASTM A320, Class 2. Type 316 stainless steel flat washers with lock washers shall be used against PVC flanges.

E. Solvent Cement: PVC solvent cement shall be in compliance with ASTM D2564 and in accordance with the pipe manufacturer's recommendations.

F. Thread Lubricant: Lubricant for Schedule 80 threaded joints shall be Teflon tape only.

G. Polyvinyl Chloride Pipe 4 Inches and Larger in Size for Pressure Service: Polyvinyl chloride pipe for nominal diameters 4 inches to 12 inches in size shall conform to the requirements of AWWA C900 with a dimension ratio of DR 18, pressure class 150, and gasketed integral bell ends. For PVC pipe larger than 12 inches for pressure service, the pipe shall conform to the requirements of AWWA C-905 with a minimum DR of 25, pressure rating of 165 psi, with gasketed integral bell ends. Pipe shall be designed for maximum working pressure of not less than 150 psi and with not less than a 4 to 1 sustained hydrostatic pressure safety factor. Fittings for C-900 PVC pipe shall be ductile iron fittings with restrained joint ends for potable water or reclaimed water lines, and restrained PVC fittings for sanitary force mains.

H. All PVC pipe installed shall be color coded for the service intended. Potable water piping shall be extruded blue, reclaimed water shall be lavender, force main white, and gravity sewer green. Care shall be taken to avoid exposure to sunlight. Pipe should be marked for its use in three places on the pipe barrel.

I. Joints (4 Inches and Larger PVC Pipe):

1. Bell and Spigot:
Pipe joints shall be made with integral bell and spigot pipe ends. The bell shall consist of an integral thickened wall section designed to be at least as strong as the pipe wall. The bell shall be supplied with factory glued rubber ring gasket with conforms to the manufacturer's standard dimensions and tolerances. The gasket shall meet the requirements of ASTM F477 "Elastomeric Seals (Gaskets) for Joining Plastic Pipe". PVC joints shall be "Ring-Tite" as manufactured by J-M Manufacturing Company, Inc. or an equal approved by the Engineer.

2. Restrained Joints:

Where indicated on Drawings, to prevent pipe joints and fittings from separating under pressure, pipe joints and fittings shall be restrained as follows:

a. PVC pipe bell and spigot joints shall be restrained with EBBA Iron MEGALUG® Series 1500 Restrainer or an equal approved by the Engineer. The restraining device and Tee head bolts shall be manufactured of high strength ductile iron meeting ASTM A536, Grade 65-42-10. Clamping bolts and nuts shall be manufactured of corrosion resistant high strength, low alloy CORTEN steel meeting the requirements of ASTM A242.

b. Cast iron mechanical joint fittings used with PVC pipe shall be restrained with the EBBA Iron MEGALUG® Series 2000 PV Restrainer or an equal approved by the Engineer. The restraining device and Tee head bolts shall be manufactured of high strength ductile iron meeting ASTM A536, Grade 65-42-10. Clamping bolts and nuts shall be manufactured of corrosion resistant high strength, low alloy CORTEN steel meeting the requirements of ASTM A242.

c. Thrust Blocking. Provided concrete reaction or thrust backing on all pressure pipe lines four (4) inches in diameter or larger (except those having flanged joints or restrained joints) at all tees, plugs, caps, and at bends defecting 222E or more, or movement shall be prevented by attaching suitable metal rods or straps as directed by the Engineer. Concrete used for this purpose shall be Class "C". Reference reaction blocking table shown on construction plan details.

d. Joint restraint. Push on joints on either side of valves and fittings restrained by mechanical restraining devices shall be restrained with "Uni-Flange" mechanisms. The number of restrained joints shall be determined by DIPRA methods and a laying schedule shall be provided for approval by the Engineer prior to installation of joint restraint.

2.03 PVC FITTINGS (4 INCHES AND LARGER PVC PIPE)
1. Fittings shall be PVC and manufactured of the same design as the PVC pipe. PVC fittings 4 inches through 36 inches shall be PVC injection molded made of materials meeting or exceeding the requirements of cell class 12454-B material as defined in ASTM D1784. Fittings shall be manufactured with pipe that meets or exceeds AWWA C-905 standard. All PVC fittings must comply with or exceed ANSI/AWWA C907, Uni-B-12, Uni-B-14 standards. All PVC fittings must be certified by CSA to the CSA B137.3 standard as third party certification. The fittings must be of the same design as the PVC pipe with an HDB of 4000 psi and minimum SDR 25 wall thickness design. All fittings must have UL-FM approval, and shall comply with or exceed all ASTM Standards for fittings. Fittings must have NSF-61 certification for contact with potable water. PVC fittings shall be pressure rated to 165 psi or greater.

2. All restrained joint systems shall be pressure rated the same as the PVC pipe and fittings. All components of the restraint system shall meet or exceed all requirements of ANSI/AWWA C-111/A21.11 latest revision. Restraints shall provide a full 360 degree contact on the pipe with sufficient gripping action to secure the clamp to the pipe and be designed so that the restraint action is increased as a result of increases in the line pressure. Restraint devices for PVC pipe and fittings shall consist of split restraint ring installed on the spigot, connected to a split ring which seats behind the gasket race of the fitting. The split restraint ring shall incorporate a series of machined serrations (not “as cast”) on the inside diameter to provide positive restraint, exact fit and 360 degree contact and support of the pipe wall. The two halves of the split backup ring shall interlock without the need for additional bolts and shall form a beveled leading edge to assure exact fit behind the fitting gasket race. Restraint devices shall be of ductile iron, ASTM A536, Grade 65-45-12 and connecting bolts shall be of high strength, low alloy material in accordance with ASNI/AWWA C111/A21.11. Restraint devices shall be Uni-Flange 1300 series or other approved restrained joint devices.

2.04 WALL SLEEVES, SEALS, PIPES AND NON-STANDARD CASTINGS

A. Wall Sleeves: Wall sleeves shall be of cast iron, ductile iron or carbon steel. The sleeve shall be hot dipped galvanized after fabrication and shall have a waterstop located in the center of the wall. Sleeves shall be provided with seals and shall be sized as required for the installation of seals. Sleeves shall terminate flush with finished surfaces of walls and ceilings, and shall extend 2 inches above the finished floor unless otherwise shown on the Drawings.

1. Wall sleeves shall be installed for all piping passing through building walls and floors, except where noted on the Drawings. Sleeves shall be of sufficient size to pass the pipe without binding. Escutcheons shall be provided at walls and floor to completely conceal the sleeves smaller than 3 inches. Escutcheons shall be 304 SS split-type.

B. Wall Sleeve Seals: Wall sleeve seals shall be modular mechanical type consisting of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and wall sleeve. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt.
head and nut. After the seal assembly is positioned in the sleeve, tightening of the bolts shall cease the rubber sealing elements to expand and provide an absolutely water-tight seal between the pipe and wall sleeve. The synthetic rubber shall be suitable for exposure to sludge and groundwater. Bolts, nuts and hardware shall be 18-8 stainless steel. The seals shall be Link Seal as manufactured by Thunderline Corporation or equal, and the wall sleeve and seal shall be sized as recommended by the seal manufacturer.

C. Wall Pipes: Wall pipes shall be of the size and types indicated on the Drawings. All wall pipes shall be of ductile iron and shall have a central fin not less than 2 inch thick and the same diameter as the bolting flange cast midway of the length to form a waterstop. Each wall pipe shall be of the same grade, thickness and interior coating as the piping to which it is joined. Those portions of the wall pipes that are buried shall have a coal tar epoxy outside coating.

D. Non-Standard Fittings and Castings: Fittings having non-standard dimensions and cast especially for this project shall be of an approved design. Fittings shall be manufactured to meet the requirements of the same specifications and shall have the same diameter and thickness as standard fittings but laying lengths and types of ends shall be determined by positions in the pipelines and by the particular piping to which it is connected. Flange facing and drilling shall conform to the 125 pound American National Standards Institute. Where require, flanges shall be drilled and tapped for studs. Other dimensions shall be substantially equal to corresponding parts of standard bell and spigot fittings.

2.05 PIPE COUPLINGS

A. Couplings:

1. Pipe couplings used to joint two pieces of plain end pipe shall be sized to suit the outside diameter of the pipe ends to be jointed. Transition couplings shall be used to join pipes of different outside diameters. Pipe couplings shall be bolted type with steel middle ring and end followers. The couplings shall be restrained for the test pressure of line using approved retaining system.

2. All carbon steel parts of the coupling shall be coated on the interior and exterior with a fusion bonded thermosetting epoxy coating with a 12 mil nominal coating thickness. The coating shall be equal to AL-CLAD as manufactured by Dresser Industries, Inc.

3. Gaskets for the coupling shall be wedge type manufactured of Buna-N resilient rubber.

4. Bolts shall be manufactured of high strength Type 304 stainless steel with Type 316 stainless steel hexagonal nuts. Bolts and nuts shall conform dimensionally to ANSI/AWWA C111, latest revision.

5. Couplings shall be Style 38 as manufactured by Dresser Industries, Inc. or an equal approved by the Engineer.
2.06 PVC BALL AND BALL CHECK VALVES

A. PVC Ball Valves: All PVC ball valves 2 inch through 4 inch in size shall be of a one piece capsule type manufactured of Type 1, Grade 1 PVC. Ball valves shall be true union design with two-way blocking capability and shall have solvent welded socket or NPT threaded ends. Ball valves shall have Teflon seats with Viton backing cushions and Viton O-ring seals, and shall be designed for a 150 psi water working pressure at 120EF. Valves shall be supplied with ABS lever operating handles. PVC ball valves shall be manufactured by Asahi/America, or equal approved by the Engineer.

B. PVC Ball Check Valves: All PVC ball check valves 1 inch through 2-1/2 inch in size shall be of a solid thermoplastic construction manufactured of Type 1, Grade 1 PVC. Ball check valves shall be true union design with solvent welded socket or NPT threaded ends. Ball check valves shall be furnished with a solid thermoplastic ball. Ball seat shall be Teflon coated Viton. The same seal shall function as both the ball seat and the union seal. PVC ball check valves shall be designed for a 150 psi water working pressure at 120EF. Valves shall be manufactured by Asahi/America, or an equal approved by the Engineer.

2.07 GATE VALVES

A. Bronze Gate Valves: Gate valves installed aboveground, less than 2 inches in size and smaller, shall be Class 150 all bronze valves conforming to Fed. Spec. WW-V-54d, Type I, Class B designed for a non-shock water pressure of 300 psi. Bronze for valve body and internals shall be in accordance with ASTM B16.18. Valves shall be furnished with screwed ends, handwheel operator, non-rising stem, one-piece solid wedge disc and screwed bonnet. Valves shall be as manufactured by Crane, Powell or an approved equal.

B. Ductile Iron Gate Valves:

1. Ductile iron gate valves shall open by turning to the left (counter-clockwise), when viewed from the stem. When fully open, gate valves shall have a clear waterway equal to the nominal diameter of the pipe. Operating nut or hand wheel shall have an arrow cast in the metal indicating the direction of opening. Each valve shall have the manufacturer's distinctive marking, pressure rating and year of manufacture cast in the body. Prior to shipment from the factory, each valve shall be tested by applying to it a hydrostatic pressure equal to twice the specified working pressure. Hydrostatic and leakage tests shall be conducted in strict accordance with ANSI/AWWA C509, latest revisions.

2. Gate valves with nominal sizes from 2 to 24 inches shall conform to ASNI/AWWA C509, latest revision, and shall be designed for a minimum working pressure of 250 psi. Valves shall be ductile iron body resilient seat type with O-ring stem seals. The valve stem, stem nut, glands and bushings shall be manufactured of zinc free bronze. Valve disc shall be constructed to
assure uniform seating pressure between disc seat ring and body seating surface. Resilient seat of valve shall be formed by a special corrosion and chloramine resistant, synthetic elastomer which is permanently bonded to and completely encapsulates a ductile iron valve disc. Interior of valve body shall be coated with a fusion bonded, thermosetting epoxy coating in accordance with AWWA C550, latest revision. Coating shall be holiday free with a minimum thickness of 12 mils. Surfaces shall be clean, dry and free from rust and grease before coating. Exterior surfaces shall be coated as specified hereinafter. Resilient seated type gate valves shall be as manufactured by U.S. Pipe or equal.

3. Valve Joints: All gate valves shall have either mechanical joint, restrained joint or flanged ends to fit the pipe run in which they are to be used. Gate valves installed on push on joint pipe shall have mechanical joint ends unless otherwise specified.

4. Valve Operators: Gate valves shall open left (counter-clockwise) when viewed from the stem. Unless otherwise shown on the Drawings or specified herein, gate valves shall have non-rising stems. Buried gate valves shall be furnished with a 2 inch square AWWA standard nut operator with a valve box and cover. Gate valves located aboveground or inside structures shall be furnished with a handwheel operator which shall have an arrow cast in the metal indicating the direction of opening. Gate valves used as isolation valves for reduced pressure backflow preventers shall be of the open screw and yoke (OS&Y) design with a handwheel operator.

5. Exterior Valve Coatings: All exterior surfaces of iron body gate valves shall be clean, dry and free from rust and grease before coating. For buried service, the exterior ferrous parts of all valves shall be coated at the factory with coal tar epoxy with a minimum total finish dry film thickness of 20 mils. Prior to backfilling, all uncoated units, bolts, glands, rods and other parts of joints shall be coated in the field with coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M. For valves installed aboveground, the exterior ferrous parts of all valves shall be shop primed at the factory with one coat, minimum dry film thickness 1.5 mils, of a primer with rust-inhibitive pigments and synthetic resins. Following installation, aboveground valves shall be finish painted in accordance with manufactures recommendations.

2.08 PINCH CHECK VALVES

A. Valves are to be of the flow operated check type with flanged joint ends on both check sleeve and metal body. Port areas shall be 100% of the mating pipe port area. The port area shall contour down to a duckbill which shall allow passage of flow in one direction and prevent reverse flow in the other direction. The flexible duckbill sleeve shall be one piece rubber construction with fabric reinforcement. The flange shall be drilled to ASNI B16.1, Class 125/ANSI B16.5 Class 150 standard. Valve body shall be drilled and tapped for flushing connection on top and bottom of the housing. Valve body shall be two piece split body construction. The two halves shall be sealed by diamond shaped cross section rubber gaskets permanently locked
by a groove cast in the valve body. Company name and location shall be cast onto the valve body. The valve shall be designed for a maximum back pressure of 100 psi. The valve shall be red valve series 33 or equal.

B. Interior Valve Coating: Prior to shipment from the factory, the interior ferrous surfaces of the valve, except for finished, non-ferrous or bearing surfaces, shall be coated with a fusion bonded, thermosetting epoxy coating in accordance with AWWA C550, latest revision. Coating shall be holiday free with a minimum thickness of 12 mils. Surfaces shall be clean, dry and free from rust and grease before coating.

C. Exterior Valve Coating: All exterior surface of swing check valves shall be clean, dry and free from rust and grease before coating. For valves installed in below ground valve vaults, the exterior ferrous parts of all valves shall be coated at the factory with coal tar epoxy with a minimum total finish dry film thickness of 20 mils. Following installation, all uncoated nuts, bolts, glands, rods and other parts of joints shall be coated in the field with coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M. For valves installed aboveground, the exterior ferrous parts of all valves shall be shop primed at the factory with one coat, minimum dry film thickness 1.5 mils, of a primer with rust-inhibitive pigments and synthetic resins. Following installation aboveground valves shall be finish painted in accordance with manufacturer’s recommendations.

2.09 PLUG VALVES

A. General: Plug valves shall be non-lubricated eccentric type with flanged or mechanical joint ends as specified below. Valves shall open by turning to the left (counter-clockwise), when viewed from the stem. Port area of valves shall be a minimum of 80 percent of full pipe area. Valve pressure ratings, body flanges and wall thicknesses shall be in full conformance with ASNI B16.1, latest revision. Valves shall seal leak-tight against full rated pressure in both directions. Prior to shipment from the factory, each valve shall be hydrostatically tested as follows: Valve seats shall be tested to provide leak tight shut off to 175 psi for valves through 12 inch and 150 psi for valves 14 inches and larger, with pressure in either direction. In addition, a hydrostatic shell test shall be performed with a plug open to a pressure twice that of rating specified above to demonstrate overall pressure integrity of the valve body. Plug valves shall be eccentric plug valves as manufactured by DeZurik, Milliken, or approved equal.

B. Eccentric Plug Valves: Eccentric plug valves shall be Series 100 as manufactured by DeZurick or equal. Valve bodies shall be constructed of high strength cast iron conforming to ASTM A126, Class B and AWWA C504, latest revisions. Valve bodies shall be cast with raised eccentric seats which have a corrosion resistant welded in overlay of not less than 90 percent pure nickel on all surfaces contacting the plug face. Valve seats shall be in accordance with AWWA C504 and AWWA C507, latest revisions. Valves shall be furnished with resilient faced plugs with Neoprene facing, suitable for use with sludge. Valves shall be furnished with replaceable, permanently lubricated, stainless steel, sleeve-type bearings in the upper and lower plug stem journals. Plug stem bearings shall comply with AWWA C504
and C507, latest revisions. Valves shall be bolted bonnet design. Valves shaft seals shall be designed so that they can be repacked without removing the bonnet and the packing shall be adjustable. Packing material shall be Buna-Vee type packing. Valve shaft seals shall be in accordance with AWWA C504 and AWWA C507, latest revisions. All exposed valve nuts, bolts, springs, washers and the like shall be Type 304 stainless steel.

C. Interior Valve Lining: All interior ferrous surfaces of the valve that will have contact with the leachate except the valve seating surfaces shall be coated with a factory applied, fusion bonded, thermosetting epoxy coating in accordance with AWWA C550, latest revisions. Coating shall be holiday free with a minimum thickness of 12 mils. Surfaces shall be clean, dry and free from rust, oil and grease before coating.

D. Exterior Valve Coating: All exterior surfaces of plug valves shall be clean, dry and free from rust and grease before coating. For buried service, the exterior ferrous parts of all valves shall be coated at the factory with coal tar epoxy with a minimum total finish dry film thickness of 20 mils. Prior to backfilling, all uncoated nuts, bolts, glands, rods and other parts of joints shall be coated in the field with coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M. For valves installed above ground, the exterior ferrous parts of all valves shall be shop primed at the factory with one coat, minimum dry film thickness 1.5 mils, of a primer with rust inhibitive pigments and synthetic resins. Following installation aboveground valves shall be finish painted in accordance with manufacturer’s recommendations.

E. Valve Joints: All plug valves installed aboveground, in valve vaults or on flanged piping shall have flanged ends. Flanges shall comply with facing, drilling and thickness of ANSI Standards for Class 125 dimension. Nuts and bolts for flanged connections in valve vaults or corrosive atmospheres shall be Type 316 stainless steel in accordance with ASTM A320, Class 2. Nuts and bolts for aboveground installations or non-corrosive atmospheres shall be carbon steel in accordance with ASTM A307, Grade B. All buried plug valves shall have mechanical joint ends with dimensions, bolting patterns and assembly in strict accordance with ANSI/AWWA C111, latest revision. Tee head bolts and nuts for mechanical joints shall be manufactured of CORTEN-A, high strength, low alloy, corrosion resistant steel as manufactured by NSS Industries, Plymouth, Michigan or an equal approved by the Engineer.

F. Mechanical Valve Actuators:

1. All plug valves installed in valve vaults or buried underground shall have actuators designed for buried and submerged service. Valves shall have seals on all shafts and gaskets on valve and actuator covers to prevent entry of water and dirt. Actuator mounting brackets for buried and submerged service shall be totally enclosed and shall have gasket seals. All exposed valve nuts, bolts, springs, washers and the like shall be Type 304 stainless steel.

2. All plug valves 6 inch in size and larger shall be furnished with mechanical gear actuators. Gear actuators shall be furnished with AWWA Standard 2 inch square operating nuts for buried valves, or handwheel, chainwheel or 2
inch square nut operators for aboveground or valve vault installation, as shown on the Drawings. Gear actuator shall be sized for the maximum pressure differential across the valve, equal to the pressure rating of the valve. All gearing shall be enclosed in a high strength cast iron housing, suitable for running in a lubricant. Housing shall be provided with seals on all shafts to prevent the entry of dirt and water into the actuator. Actuator shaft and quadrant shall be supported on permanently lubricated bronze bearings. Actuator shall clearly indicate valve position for aboveground and valve vault installations and an adjustable stop shall be provided to set closing torque. Actuator shall be capable of withstanding an over-torque without damage up to 450 foot pounds for 2 inch square nut operators and to 300 foot pounds for handwheel or chainwheel operators.

3. Four inch and smaller aboveground valves shall be furnished with manual actuators, one-quarter turn to open. Actuator shall be supplied with an AWWA Standard 2 inch operating nut with a standard valve operating lever.

2.10 BUTTERFLY VALVES

A. General: All butterfly valves shall be of the tight closing, rubber seat type with rubber seats that are securely fastened to the valve body or disc. No metal to metal seating surfaces will be permitted. Valves shall be bubble tight at rated pressures with flow in either direction, and shall be satisfactory for applications involving throttling service and/or frequent operation and for applications involving valve operation after long periods of inactivity and for buried installation. Valve discs shall rotate 90 degrees from the full open position to the tight shut position. Valves shall meet the full requirements of AWWA Standard C 504 for Class 150B, short body, flanged or mechanical joint as required. Wafer design valves are not acceptable, except when indicated on the Drawings. The manufacturer shall have manufactured tight closing, rubber seat butterfly valves for a period of at least five years. All valves shall be Henry Pratt Company, DeZurik, Mueller, or equal.

B. Valve Body: Valve bodies shall be constructed of cast iron ASTM A126 Class B or ASTM A48 Class 40. Ends shall be mechanical joint for buried service and flanged for aboveground use. Flange drilling shall be 125 pound in accordance with ANSI B16.1. Two trunnions for shaft bearings shall be integral with each valve body. When disc has the rubber seat, the valve body shall have a 18-8 Type 304 stainless steel body seat. The port diameter shall be no smaller than one inch less than the nominal valve size.

C. Valve Shaft: The valve shaft may consist of a one piece unit extending completely through the valve unit or may be the "stub shaft" type. Materials to be stainless steel 18-8 Type 304.

D. Valve Discs: Valve discs shall be constructed either of cast iron ASTM A126 Class B, ductile iron ASTM A536 or cast iron ASTM A48 each with Type 316 stainless steel seating edge or the entire disc may be constructed of cast 316 stainless steel. The stainless steel seating edge is not applicable to rubber seat disc type valves.

15100 - 15
E. Valve Seats: Valve seats shall be of a synthetic or natural rubber compound and any be mounted on the valve body.

F. Valve Bearings: Valves shall be fitted with sleeve type bearings. Bearings shall be corrosion resistant and self-lubricating.

G. Valve Packings: Packing shall be self-adjusting Chevron type or of the O-ring type.

H. Interior and Exterior Valve Coatings: The valve shall be coated similarly as described in Section 2.08 B and C.

2.11 RESILIENT SEATED CHECK VALVES

A. Resilient seated check valves shall be manufactured from ductile iron meeting or exceeding ASTM A536. Valves shall be rated for 250 psig cold water working pressure and shall comply to ANSI/AWWA C508.

B. Valves shall have a ductile iron disc fully encapsulated with rubber. Disc travel to closure shall not be more than 35 degrees and shall seal drop tight at pressures above 5 psig.

C. Valves to be coated with fusion-bonded epoxy on all internal and external ferrous surfaces.

D. Bronze seat rings are not allowed. Disc shall be the only allowable moving part. No O-Rings, pivot pins or other bearings are allowed. Disc must be reversible such that either side will seal equally.

E. Valves shall be equal to AMERICAN’s Series 2100 or Flomatic 745 ductile iron resilient seated check valve.

2.12 SERVICE SADDLES AND CORPORATION STOPS

A. Service Saddles: Service saddles shall have ductile iron bodies in accordance with ASTM A536, latest revision, with double stainless steel straps. Bodies shall be brass or ductile iron, body shall have a fusion bonded nylon coating with a minimum thickness of 12 mils. Straps shall be Type 304 stainless steel with premium grade Type 304 L stainless steel bolts and Type 304 stainless steel washers and nuts. The nuts shall be Teflon coated. The gasket material shall be an elastomeric compound resistant to degradation by oil, natural gas, acids, alkalies, most aliphatic fluids and leachate. The outlet of the saddle shall have NPT threads. Service saddles shall be Rockwell No. 317, Ford or an equal approved by the Engineer.

B. Corporation Stops: Corporation stops shall be all bronze construction in accordance with AWWA C80, latest revision. Inlet threads shall be NPT iron pipe threads and the outlet connections shall be of the packed joint type suitable for use with Schedule 80 PVC pipe. Corporation stops shall be Ford Ball Corp Type FB 1102, McDonald or an equal approved by the Engineer.
C. Polyethylene Tubing. Service tubing shall be nominal wall polyethylene tubing conforming to the requirements of ASTM D-2737 and AWWA C-901. Tubing shall be manufactured from prime virgin PE-3408 high density polyethylene (HDPE) resin. Each coil of tubing shall be spiral wrapped with four (4) inch wide black .004 polyethylene film with minimum 2% carbon black content to shield the tubing from ultraviolet and violet light. Reclaimed water service tubing shall be lavender in color.

D. Tubing shall be DR 9.0 CTS OD and supplied in 100 foot rolls. Tubing shall conform to all requirements set forth in AWWA C901. Tubing shall be marked with the following information at not more than 5 foot intervals: nominal size, material code designation, dimension ration and diameter base, AWWA pressure class, AWWA designation and manufacturer's name or trademark and product record code.

E. Fittings for use with polyethylene (PE) tubing shall be brass containing a pressure sealing O-ring and undirectional grip ring and shall be designed for "press-on" or "stab-on" installation, and manufactured by Ford Meter Box Company.

2.13 SOLENOID VALVES

A. Solenoid valves shall be 2 way type for normally closed operation designed for not less than a 150 psi water working pressure. The valves shall have forged stainless steel Series 300 bodies for 3/4 inch and smaller and brass bodies for 1 inch and larger with NPT threaded ends, Buna N seals/disks and NEMA 4X Red hat II solenoid enclosures. The valves shall operate on 120 VAC power, shall have threaded conduit hubs, standby manual operators and shall not require a minimum operating pressure differential for standby operation. The valves shall be provided with a manual override. The valves shall be Series 8210G for 3/4 inch and smaller and Series 8221G for one inch and larger as manufactured by Automatic Switch Company or approved equal.

2.14 FLEXIBLE EXPANSION JOINTS

A. Flexible expansion joints shall be of the molded wide arch design manufactured of chloroprene (neoprene) rubber with polyester reinforcement. Chloroprene (neoprene) body shall be supplied with a hypalon coating. Joints shall be flanged suitable for 150 psi water working pressure and in accordance with ANSI B16.1 dimensions and bolting patterns. Flanged ends shall be furnished and galvanized, split ductile iron retaining rings.

B. Provide limit restraint bolts on all pump suction and discharge lines. Expansion joints 6 inches and larger in size shall have a minimum of four limit restraint bolts. Restraint bolts and nuts shall be Type 304 stainless steel.

C. Minimum performance for flexible expansion joints shall be as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Axial Compression</th>
<th>Axial Elongation</th>
<th>Lateral Angular Deflection</th>
<th>Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D. Flexible expansion joints shall be Style 1015 Maxi-Joint as manufactured by General Rubber Corporation, Style 100 Metrasphere as manufactured by the Metraflex Company or an equal approved by the Engineer. Flexible joints for pump suction and discharge piping shall be designed for leachate service at 250 degrees F.

2.15 PRESSURE GAUGE ASSEMBLIES

A. Pressure gauges shall have the following design features: glycerin filled, 2 inch dial, aluminum dial with black numerals on white background, Type 316 stainless steel bourdon tube and movement, 300 series stainless steel case and ring, safety glass lens, threaded lens retaining ring, adjustable pointer with over-pressure stop and zero pointer stop, blowout protection, 2 inch Type 316 stainless steel stem mounting and 1.0 percent accuracy based on full scale. Provide Type 316 stainless steel pressure snubbers on all gauges not protected by seals. Pressure gauges shall be as manufactured by U.S. Gauge, Ashcroft, Marshalltown, Marsh, or approved equal.

B. Pressure Gauge Service and Ranges: Pressure gauges shall be furnished for the following services with the indicated ranges. Diaphragm seals shall be furnished for gauges as indicated.

2.16 VALVE BOXES

A. Furnish, assemble, and place a valve box over the operating nut for each buried valve. The valve box shall be designed so as to prevent the transmission of surface loads directly to the valve or piping.

B. Valve boxes shall be of the adjustable slide type of suitable length with an interior diameter of not less than 5 inches. The valve boxes shall be manufactured of cast iron and shall be of the two piece design including a bottom section and top section with cover. The cast iron cover shall be shaped and labeled for the appropriate service designation. The top section shall be adjustable for elevation and shall be set to allow equal movement above and below finished grade.

C. The castings shall be manufactured of clean, even grain, gray cast iron conforming to ASTM A48, Class 30B for Gray Iron Castings; and shall be smooth, true to pattern, free from blow holes, sand holes, projections and other harmful defects. The seating surfaces of both the cover and the top section shall be machined so that the cover will not rock after it has been seated.
D. The valve boxes shall be coated inside and outside with an asphaltic coating prior to machining, so that the machined seating surfaces will be free of any coating. Cast iron valve box assemblies shall be Clow Corp. No F2452, Tyler Corp. Series 6855 or 6865 or an approved equal.

E. Valve extension stems shall be provided for all buried valves when operating nut is deeper than 3 feet below final grade.

2.17 PIPE AND VALVE IDENTIFICATION SYSTEMS

A. Not Included

2.18 GLOBE VALVES AND ANGLE VALVES

A. Globe valves and angle valves shall be suitable for throttling flows of liquid, oil, gas and air lines. Valves shall have end connections as indicated on the Drawings and shall be suitable for a working pressure of not less than 150 psi.

B. Each valve shall have self-lubricating TFE-impregnated asbestos packing to provide a tight stem steel. Valves shall have a removable bonnet in order to facilitate dismantling and reassembly of the valves.

C. Globe valves shall be Crane Model No. 1, Stockham Valves Figures B-16, or equal. Angle valves shall be Crane Model No. 2, Stockham Valves Figure B-216, or equal.

2.19 PRESSURE REGULATING VALVE

A. Pressure regulating valves shall be of bronze body construction, seat shall be of stainless steel, diaphragm shall be Buna N.

B. Regulator shall have a maximum pressure limit of 100 psi and the pressure reduction range shall be to 5 psi for all the services except for belt washwater. The maximum and minimum pressure variation range for the belt washwater shall be per gravity belt supplier's recommendations. The regulator shall be a direct acting, spring loaded, diaphragm type for hydraulic operation, and shall be capable of delivering a constant pressure. An adjusting screw shall be easily accessible for changing the outlet pressure.

C. Valves shall be installed in strict accordance with the manufacturer's recommendations. The manufacturer shall be Watts, or equal.

2.20 TIE RODS

A. When prior approval is obtained from the Engineer, ductile iron pipe, fittings, and valves may be restrained using tie bolt joint restraint. Joint restraint materials for this method of restraint shall be the Super-Star SST Series Joint Restraint Joint System as manufactured by Star National Products, a Division of Star Industries, Inc., Columbus, Ohio, or an equal approved by the Engineer.
B. All bolts, nuts, washers, tie rods and other fasteners for the joint restraint system shall be manufactured of CORTEN high strength, low alloy, corrosion resistant steel in conformance with ASTM A242. Tie bolts shall be manufactured of heat treated CORTEN steel. Tie rods and all fasteners for the system shall be galvanized in conformance with the requirements of ASTM A123. Tie rods shall have a minimum diameter of 3/4 inch. The number of tie rods required per joint shall be as recommended by the manufacturer.

C. Prior to backfilling after installation, all parts of the joint restraint system shall be coated with coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M, for a minimum dry film thickness of 20 mils.

2.21 REDUCED PRESSURE BACKFLOW PREVENTERS

B. Product Handling: Exercise care in transporting and handling backflow preventers to avoid damage. Inside of backflow preventers shall be kept free of dirt and debris.

C. Reduced pressure principle backflow preventers shall include an integral sensing system that will automatically open a relief valve whenever the differential pressure between the inlet supply and the reduced pressure zone drops to 2 psi. The relief valve shall remain open until a positive pressure differential of 2 psi is re-established. If pressure upstream of the first check valve drops to atmospheric or below, the relief valve shall remain fully open providing an internal air gap between the first check valve and the water level in the reduced pressure zone. The unit shall also be constructed such that any minor leakage of the second check valve will result in visible flow from the relief valve, event if the first check valve is totally disabled.

D. Reduced pressure principle backflow preventers shall have all bronze bodies for sizes 22 inches and smaller and all ductile iron bodies for sizes 3 inches and larger. Ductile iron bodies shall be coated with a fusion bonded thermosetting epoxy coating in accordance with AWWA C550 with a minimum, holiday free, coating thickness of 12 mils. The reduced pressure backflow preventer shall consist of two independently operated, spring loaded, wye pattern, poppet type check valves designed for installation in a normal horizontal flow attitude. An independent spring loaded relief valve shall be located between the two check valves. Check valve assemblies, springs and seats and all other internal parts shall be constructed of Type 316 stainless steel. Relief valve body and trim shall be constructed of bronze. Check valve and relief valve seats shall be field replaceable without removing the device from the service line. Backflow preventers shall be designed for a working pressure of 200 psi and a temperature range of 32EF to 140EF. The backflow preventer shall be manufactured as a complete unit including test cocks, and upstream and
downstream isolation valves. The test cocks shall be manufactured of bronze and shall be arranged such that the unit can be tested without removing the unit from the line.

E. Isolation Valves: Reduced pressure backflow preventers shall be furnished complete with isolation valves. For sizes 22 inches and smaller, the isolation valves shall be all bronze ball valves with Buna N O-rings and valve seats, and a lever operating handle. Ball valves shall be in accordance with AWWA C80, latest revision. For sizes 3 inches and larger, the isolation valves shall be resilient seated gate valves with flanged ends and OS&Y handwheel operators. Gate valves shall be as specified and described hereinbefore.

F. Exterior Coating: The exterior ferrous surfaces of the reduced pressure backflow preventer and the isolation valves shall be shop primed at the factory with one coat, minimum dry film thickness 1.5 mils, of a primer with rust inhibitive pigments and synthetic resins compatible with the finish coats. Following installation, the backflow preventer unit and aboveground piping shall be finish painted in accordance with manufacturer’s recommendations. All surfaces to be coated shall be clean, dry and free of rust, oil and grease.

G. Acceptable Manufacturers: Reduced pressure principle backflow preventers shall Model 825 as manufactured by Febco, or an equal approved by the Engineer.

2.22 TAPPING SLEEVES AND VALVES

A. Tapping sleeves shall be designed for a water working pressure of 150 psi and shall be mechanical joint end type. Tap shall be done under pressure and without interruptions of service. Taps shall be tested at factory to 175 psi.

B. Tapping valves shall be as specified herein under Gate Valves.

C. The manufacturer shall furnish the services of a supervisor who will direct all operations for the installation of material, attachment of tapping machine and operation of the machine in making the connection. The Contractors shall bear all such rental and supervision costs, and all other related costs.

D. Tapping sleeves and valves shall be the product of one of the following manufacturers, or equal: Mueller, Clow, M&H.

2.23 FLANGED ADAPTERS (WHEN APPLICABLE)

A. For joining plain end or grooved end pipe to flanged pipes and fittings.

B. Adapters shall conform in size and bolt hole placement to ANSI standards for steel and/or cast iron flanges 125 or 150 pound standard unless otherwise required for connections.

C. Exposed Sleeve Type:
1. Constructed from steel.

2. Coating: In accordance with manufacturer’s recommendations.

4. Acceptable Manufacturers:
 a. Dresser Manufacturing Company - Style 128 for cast iron ductile iron and steel pipes with diameters of two (2) inches through 96 inches.
 b. Or equal.

2.24 FIRE HYDRANTS

A. Hydrants shall comply with AWWA Standard C402 "Fire Hydrants for Ordinary Water Works Service", and shall be equipped with a minimum of one (1) pump outlet nozzle 4 2 inches in diameter and two (2) hose nozzles 2 2 inches in diameter. Threads, nozzle caps, operating nuts and color shall conform to City standards. Units shall be traffic types with breakable safety clips, or flange, and stem, with safety coupling located below barrel break line to preclude valve opening. Hydrants shall be dry top. Outlet nozzles shall be on the same place, with minimum distance of 18 inches from center of nozzles to ground line. Valve shall be compressive type with 52 inches minimum opening and hose inlet connection to be 6 inches minimum. Hydrants shall open left by Mueller A-423 or Clow Medallion Hydrant (AWWA C-502). Hydrants must drain.

2.25 INSERT VALVE

A. General
The Ductile Iron Insert Valve shall be a rated for 250 psig and shall be a Resilient Wedge Gate Valve as specified in this section. The valve shall be able to be installed into an existing pressurized pipeline while maintaining constant pressure and service as usual. After closing the wedge and adequately restraining the valve body the downstream pipe can be completely removed and replaced (allowing for upsizing of the pipe if necessary). The host pipe shall not be a permanent component of the Insert Valve. The Insert Valve shall be UL listed and approved to NSF / ANSI Standard 61- Drinking Water System Components. The insert valve must be installed by a qualified installer per the manufacturer’s requirements.

B. Construction: Sizes 12" and smaller must be capable of working on Cast/Grey Iron or Ductile Iron Class A, B, C and D, IPS PVC, C900 and C909 PVC, Steel, AC pipe diameters without changing either top or bottom portion of split valve body. The 250 psig maximum working rating markings must be cast into the body of the valve. After the installation of the Insert valve body on to the existing pipe a pressure test of 1.1 times that of the contents shall
sustained for 15 minutes. Once the pressure test is affectively achieved the Insert valve body must not be moved in accordance with AWWA Standards. If the Insert valve is moved the pressure test must be completed again. The Insert valve must not be moved or repositioned once the pressure test is achieved.

C. **Resilient Wedge Gate Assembly**: The construction of the Resilient Wedge shall comply with AWWA C509 requirements. The ductile iron wedge shall be fully encapsulated with EPDM rubber by a high pressure and high temperature compression or injection mold process. This will assure the ductile gate is fully coated with molded rubber – no exposed iron. The resilient wedge shall seat on the valve body and not the pipe to obtain the optimum seating and flow control results. The resilient wedge shall be totally independent of the carrier pipe. The resilient wedge shall not come into contact with the carrier pipe or depend on the carrier pipe to create a seal. Abrasion results thus shorting the life and quality of the shut down if the wedge contacts the pipe. Pressure equalization on the down or upstream side of the closed wedge shall not be necessary to open the valve. The wedge shall be symmetrical and seal equally well with flow in either direction. The Resilient wedge must ride inside the body channels to maintain wedge alignment throughout its travel to achieve maximum fluid control regardless of high or low flow pressure or velocity. An oversized flow way shall be unobstructed to provide optimum flow. The valve shall be fully epoxy coated on the interior and the exterior a minimum of 10 mils epoxy in compliance with AWWA C550 and certified to ANSI/NSF-61. The fusion-bonded coating shall be applied prior to assembly so that even the bolt holes and body-to-bonnet flange surfaces are fully epoxy coated.

D. The valve shall have triple O-Ring stem seals, two O-Rings above, and one below the thrust collar. The lower two O-Rings provide a permanently sealed lubrication chamber that will make the valve easier to operate over a longer period of time. The upper O-Ring ensures that sand, dirt or grit cannot enter the valve to cause damage to the lower O-Rings. This is especially important for buried and sewage service applications. Side flange seals shall be of the O-Ring type of either round, oval, or rectangular cross-sectional shape.

E. **American Made Quality**: All primary parts and components to be exclusively and completely assembled, manufactured, machined and coated in the USA. The purchaser shall, with reasonable notice, have the right to plant visitation at his/her expense. Bolting materials shall develop the physical strength requirements of ASTM A307 with dimensions conforming to ANSI B18.2.1.

F. **Split Restraint Devices**: Shall consist of multiple gripping wedges incorporated into a follower gland meeting the applicable requirements of ANSI/AWWA C110/A21.10. The devices shall have a working pressure rating of 350 psi for 4-12 inch. Ratings are for water pressure and must include a minimum safety factor of 2 to 1 in all sizes. Chemical and modularity tests shall be performed as recommended by the Ductile iron Society, on a per ladle basis. Three test bars shall be incrementally poured per production shift as per U.L. specifications and ASTM A536. Testing for tensile, yield and elongation shall be done in accordance with ASTM E8.
G. Gland body wedges and wedge actuating components shall be cast from grade 65-45-12 ductile iron material in accordance with ASTM A536. Mechanical joint restraint shall require conventional tools and installation procedures per AWWA C600, while retaining full mechanical joint deflection during assembly as well as allowing joint deflection after assembly. Proper actuation of the gripping wedges shall be ensured with torque limiting twist off nuts. Set screw pressure point type hardware shall not be used.

The Insert valve shall be as manufactured by Team Industrial Services 13131 Dairy Ashford Rd Sugar land, TX 77478 1-800-662-8326 281-331-6154, Team InsertValve Patent number 6,776,187 and 7,225,827 or approved equal.

PART 3 - EXECUTION

3.01 INSPECTION

A. All pipe, fittings, valves and other material shall be subject to inspection and approval by the Engineer after delivery, and no broken, cracked, imperfectly coated, or otherwise damaged or unsatisfactory material shall be used. When a defect or crack is discovered, the injured portion shall not be installed. Cracked pipe shall have the defect cut off at least 12 inches from the break in the sound section of the barrel.

3.02 GENERAL INSTALLATION REQUIREMENTS

A. Excavation, backfill, and compaction shall conform to the provisions of Section 02100.

1. Pipe Cradle: Upon satisfactory installation of the pipe bedding material as specified, a continuous trough for the pipe barrel and recesses for the pipe bells or couplings shall be excavated by hand digging. When the pipe is laid in the prepared trench, true to line and grade, the pipe barrel shall receive continuous, uniform support and no pressure will be exerted on the pipe joints from the trench bottom.

B. Cover for underground piping shall not be less than that indicated on the Drawings. The minimum cover for pipe shall be 36 inches. In areas where other piping conflicts preclude the maximum cover desired, the piping shall be laid to provide the maximum cover obtainable.

C. Pipe, fittings, valves and accessories shall be installed as shown or indicated on the Drawings.

D. All connections to existing piping systems shall be made as shown or indicated on the Drawings after consultation and cooperation with authorities of the Owner.

E. Pipe Joint Deflection: Whenever it is desirable, and approved by the Engineer, to deflect pipe joints to avoid obstructions or to maintain required alignment, the amount of the joint deflection shall not exceed 80 percent of the maximum limits allowed by the pipe manufacturer.
F. In preparation for pipe installation, placement (stringing) of pipe should be as close to the trench as practical on the opposite side of the trench from the excavated material. The bell ends of the pipe should point in the direction of the work progress.

G. Pipe and fittings shall be laid accurately to the lines and grades indicated on Drawings or required. Where grades for the pipeline are not indicated on the Drawings, maintain a uniform depth of cover with respect to finish grade. Care shall be taken to insure a good alignment both horizontally and vertically and to give the pipe a firm bearing along its entire length. Any pipe which has its grade or joint disturbed after laying shall be taken up and re-laid.

H. All pipe and fittings shall be cleared of sand, dirt, and debris before laying. All precautions shall be taken to prevent sand, dirt or other foreign material from entering the pipe during installation. If necessary, a heavy, tightly woven canvas bag of suitable size shall be placed over each end of the pipe before lowering into the trench and left there until the connection is made to the adjacent pipe. Any sand, dirt, or other foreign material that enters the pipe shall be removed from the pipe immediately. Interior of all pipe and fittings shall be kept clean after installation until acceptable in the complete work.

I. Any time that pipe installation is not in progress, the open ends of pipe shall be closed by a watertight plug or other method approved by the Engineer. Plugs shall remain in pipe ends until all water is removed from the trench. No pipe shall be installed when trench conditions are unsuitable for such work, including standing water, excess mud, or rain.

J. After pipe has been laid, inspected, and found satisfactory, sufficient backfill shall be placed along the pipe barrel to hold the pipe securely in place while conducting the preliminary hydrostatic test. No backfill shall be placed over the joints until the preliminary test is satisfactorily completed, leaving them exposed to view for the detection of visible leaks.

K. Upon satisfactory completion of the hydrostatic test, backfilling of the trench shall be completed.

L. Aboveground and Exposed Piping: Piping shall be cut accurately to measurements established at the job site and shall be worked into place without springing or forcing, properly clearing all equipment access areas and openings. Changes in sizes shall be made with appropriate reducing fittings. Pipe connections shall be made in accordance with the details shown and manufacturer's recommendations. Open ends of pipe lines shall be properly capped or plugged during installation to keep dirt and other foreign material out of the system. Pipe supports and hangers shall be provided where indicated or as required to insure adequate support of the piping.

3.03 INSTALLATION OF DUCTILE IRON PIPE

A. Handling and Cutting Pipe:
1. Care shall be taken in handling, cutting, and laying ductile iron pipe and fittings to avoid damaging the pipe and interior coal tar epoxy or cement mortar lining, scratching or marring machined surfaces, and abrasion of the pipe coating. All cracked pipe and fittings shall be removed at once from the work at no additional cost to the Owner.

2. Pipe cutting shall be done in a neat workmanlike manner without creating damage to the pipe and interior coal tar epoxy or cement mortar lining. Ductile iron pipe may be cut using an abrasive pipe saw, rotary wheel cutter, guillotine pipe saw, milling wheel saw or oxyacetylene torch. Cut ends and rough edges of ductile iron pipe shall be ground smooth. For push-on joint connections, the cut end shall be beveled to prevent gasket damage during joint assembly. Interior lining shall be repaired at cut ends per the manufacturer's instructions prior to joint assembly.

B. Laying Pipe and Fittings:

1. Bedding for Ductile Iron Pipe: Minimum bedding requirements shall be Type 2 as defined in ANSI/AWWA C600, latest revision. Provide proper bedding required, in accordance with thickness class of pipe being laid and depth of cover. Proper pipe laying conditions shall be in accordance with ANSI/AWWA C150 and C151, latest revision, and ANSI/AWWA C600, latest revision.

2. All ductile iron pipe and fittings shall be laid in accordance with American Water Works Association Standard ANSI/AWWA C600, latest revision, entitled "Standard for Installation of Ductile Iron Water Mains and Their Appurtenances", with the following sections specifically applying:
 a. Section 3.3 - Pipe Installation
 b. Section 3.4 - Joint Assembly

C. Ductile Iron Pipe Joints:

1. Type: The joints of all pipelines shall be made absolutely tight. The particular joint used shall be approved by the Engineer prior to installation. Where shown on the Drawings or where, in the opinion of the Engineer, settlement or vibration is likely to occur, all pipe joints shall be bolted mechanical type or restrained type as specified above, or as indicated on the Drawings.

2. Push-on Joints: Push-on joints shall be made in strict accordance with the manufacturer's recommendations. Lubricant, if required, shall be an inert, non-toxic, water soluble compound incapable of harboring, supporting, or culturing bacterial life. Manufacturer's installation recommendations shall be submitted to the Engineer for review and approval before commencing work. The bell of the pipe shall be cleaned of excess tar or other obstructions and
wiped out before the cleaned and prepared spigot of the next pipe is inserted. The new pipe shall be shoved firmly into place until properly seated and held securely until the joint has been completed.

3. Mechanical Joint: All types of mechanical joint pipes shall be laid and jointed in full conformance with manufacturer's recommendations, which shall be submitted to the Engineer for review and approval before work is begun. Only skilled workmen shall be permitted to makeup mechanical joints. Torque wrenches, set as specified ion AWWA Standard C111, shall be used; or spanner type wrenches not longer than specified therein may be used without the permission of the Engineer.

4. Flanged Joints: Flanged joints shall be made up by inserting the gasket between the flanges. The threads of the bolts and the faces of the gaskets shall be coated with suitable lubricant immediately before installation.

5. Restrained Joints: Restrained joints shall be provided where indicated on the Drawings. Joint assembly shall be made in strict accordance with the manufacturer's instructions, which shall be submitted to the Engineer for review and approval before commencing work.

3.04 INSTALLATION OF PVC PIPE

A. Storage and Handling:

1. PVC pipe shall be delivered to the site in unbroken bundles packaged in such manner as to provide protection against damage. When possible, pipe should be stored at the job site in the unit packages until ready for use. Packaged units shall be handled using a forklift or a spreader bar with fabric straps. Packaged units shall not be stacked at the job site higher than two units high.

2. When it is necessary to store PVC pipe for long periods of time, exposure to direct sunlight shall be prevented by covering the pipe with an opaque material. Adequate air circulation above and around the pipe shall be provided as required to prevent excessive heat accumulation. PVC pipe shall not be stored close to heat sources of hot objects such as heaters, fires, boiler, or engine exhaust. Pipe gaskets shall be protected from excessive exposure to heat, direct sunlight, ozone, oil and grease. The interior and all sealing surfaces of pipe, fittings, and other appurtenances shall be kept clean and free of dirt and foreign matter.

3. Care shall be taken in handling and laying pipe and fittings to avoid severe impact blows, crushing, abrasion damage, gouging or cutting. Pipe shall be lowered, not dropped, from trucks or into trenches. All cracked, damaged, or defective pipe and fittings, or any length of PVC pipe having a gouge, scratch or other permanent indentation of more than 10 percent of the wall thickness
in depth, shall be rejected and removed at once from the work and replaced with new acceptable pipe at no additional cost to the Owner.

B. Field Cutting PVC Pipe: Field cutting of pipe shall be done in a neat workmanlike manner without creating damage to the pipe. The pipe shall be cut square with a fine-toothed hand or power saw or other cutter or knife designed for use with plastic pipe. Prior to cutting, the pipe shall be marked around its entire circumference or a square in vise shall be used to ensure the pipe end is cut square. Remove burrs by smoothing edges with a knife, file, or sandpaper.

1. Field Cutting Bell and Spigot PVC Pipe: Bevel the cut end of the pipe using a pipe beveling tool, wood rasp or portable sander to prevent damage to the gasket during joint assembly. A factory finished beveled end should be used as a guide to ensure proper beveling angle and correct depth of bevel. Round off any sharp edges on the leading edge of the bevel with a knife or file.

C. Laying PVC Pipe:

1. Pipe Bedding: Bedding for PVC pipe shall be as specified using granular pipe bedding material.

2. All PVC pipe shall be laid in accordance with the pipe manufacturer's published installation guide, the AWWA Manual of Practice No. M23 "PVC Pipe-Design and Installation" and the Uni-Bell Plastic Pipe Association installation recommendations.

D. PVC Pipe Joint Assembly for Rubber Gasketed Bell and Spigot Pipe:

1. The PVC bell and spigot joint shall be assembled in accordance with the pipe manufacturer's installation instructions. Clean the interior of the bell, the gasket, and the spigot of the pipe to be jointed with a rag to remove any dirt or foreign material before assembling. Inspect the gasket, pipe spigot bevel, gasket groove and sealing surfaces for damage or deformation.

2. Lubricate the spigot end of the pipe with a lubricant supplied or specified by the pipe manufacturer for use with gasketed PVC pipe in potable water systems. The lubricant should be supplied as specified by the pipe manufacturer. After then spigot end is lubricated, it must be kept clean and free of dirt and sand. If dirt and sand adhere to the lubricated end, the spigot must be wiped clean and relubricated.

3. Insert the spigot into the bell so that it contacts the gasket uniformly. Align the pipe sections and push the spigot end into the bell until the manufacturer's reference mark on the spigot is flush with the end of the bell. The pipe should be pushed into the bell using a bar and wood block. The joint shall not be assembled by "stabbing" or swinging the pipe into the bell, nor shall construction machinery be used to push the pipe into the bell.
4. If undue resistance to insertion of the spigot end is encountered or if the reference mark does not reach the flush position, disassemble the joint and check the position of the gasket. If the gasket is twisted or pushed out of its seat, inspect the components, repair or replace damaged items, clean the components and repeat the assembly steps. Be sure the pipe is in proper alignment during assembly. If the gasket was not out of position, check the distance between the spigot end and the reference mark and relocate the mark if it is out of position.

E. PVC Pipe Joint Assembly for Threaded and Solvent Welded Pipe

1. All threaded and solvent welded joints shall be made watertight. All pipe cutting, threading and jointing procedures for threaded and solvent welded PVC pipe joints shall be in strict accordance with the pipe and fitting manufacturer's printed installation instructions. Thread lubricant for threaded joints shall be Teflon tape only.

2. At threaded joints between PVC and metal pipes, the metal side shall contain the socket end and the PVC side the spigot. A metal spigot shall not, under any circumstances, be screwed into a PVC socket.

F. PVC forcemains underground shall be strapped every 10 feet or spiral wrapped with an insulated green No. 14 gauge copper ground wire for future location. The wire shall be stubbed out at each valve box or manhole.

3.05 FITTING INSTALLATION FOR UNDERGROUND PIPING

A. The weight of ductile iron fittings shall not be carried by the pipe on which they are installed. The fitting shall be supported by a concrete cradle as shown on the standard details. Concrete used for supports shall have a minimum compressive strength of 3000 psi at 28 days. Concrete for support cradle shall be poured against undisturbed soil.

B. All glands, clamps, bolts, nuts, studs and other uncoated parts of fitting joints for underground installation shall be coated with two coats, 10 mils DFT per coat, of coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M.

3.06 CONCRETE PIPE ENCASEMENT

A. Concrete for concrete pipe encasement shall have a minimum strength of 3000 psi at 28 days and encasement shall be constructed in accordance with details shown on the Drawings. Encasement shall be constructed where:

1. Indicated on the Drawings

2. The Engineer shall order the pipeline encased.
B. The points of beginning and ending of concrete pipe encasement shall be not more than 6 inches from a pipe joint to protect the pipe from cracking due to uneven settlement of its foundation or the effects of superimposed live loads. Pipe shall be wrapped in visqueen.

C. Pipe encasement shall provide a minimum coverage of 6 inches all around the pipe including pipe bells.

3.07 INSTALLATION OF PIPE SLEEVES, WALL CASTINGS AND COUPLINGS

A. Pipe sleeves and wall castings shall be provided at the locations called for on the Drawings. These units shall be as detailed and of the material as noted on the Drawings. They shall be accurately set in the concrete or masonry to the elevations shown. All wall sleeves and castings required in the walls shall be in place when the walls are poured. Ends of all wall castings and wall sleeves shall be of a type consistent with the piping to be connected to them.

B. Link seals for wall sleeves shall be installed in strict accordance with the manufacturer's printed installation instructions. For watertight applications in tanks or treatment units, the link seal installation shall be tested hydrostatically for leaks at the same time as the tank or treatment unit. Any leaks that occur during the test period shall be repaired by checking the link seals for proper installation and replacement of unit(s) found to be defective at no additional cost to the Owner.

C. Pipe couplings shall be installed in strict accordance with the manufacturer's published instructions and recommendations.

3.08 INSTALLATION OF VALVES

A. Valves of the size and type shown on the Drawings shall be set plumb and installed at the locations indicated on the Drawings. Valves shall be installed in accordance with manufacturer's installation instructions and with the Details shown on the Drawings.

B. Valves shall be installed such that they are supported properly in their respective positions, free from distortion and strain. Valves shall be installed such that their weight is not borne by pumps and equipment that are not designed to support the weight of the valve.

C. Valves shall be carefully inspected during installation; they shall be opened wide and then tightly closed and the various nuts and bolts shall be tested for tightness. Special care shall be taken to prevent any foreign matter from becoming lodged in the valve seat. Check and adjust all valves for smooth operation.

D. Install valves with the operating stem in either horizontal or vertical position.

E. Allow sufficient clearance around the valve operator for proper operation.
F. Clean iron flanges by wire brushing before installing flanged valves. Clean carbon steel flange bolts and nuts by wire brushing, lubricate threads with oil or graphite, and tighten nuts uniformly and progressively. Clean threaded joints by wire brushing or swabbing. Apply Teflon joint compound or Teflon tape to pipe threads before installing threaded valves. Joints shall be watertight.

G. For buried valves, a valve box shall be centered accurately over the operating nut and the entire assembly shall be plumb. The tops of valve boxes shall be adjusted to the proper elevation as specified below and as shown on the Drawings.

1. In paved areas, tops of valve box covers shall be set flush with pavement. Following paving operations, a 16 inch square shall be neatly cut in the pavement around the box and the paving removed. The top of the box shall then be adjusted to the proper elevation and a 30 inch square by 6 inch thick concrete pad poured around the box cover. Concrete pads in traffic areas shall be reinforced with No. 4 reinforcement bars as shown on the Drawings. Concrete for the pad shall be 3000 psi compressive strength.

2. In unpaved areas, tops of valve box covers shall be set 2 inches above finished grade. After the top of the box is set to the proper elevation, a 16 inch square by 6 inch thick concrete pad shall be poured around the box cover. Concrete for the pad shall be 3000 psi compressive strength.

H. Valves shall be tested hydrostatically, concurrently with the pipeline in which they are installed. Protect or isolate any parts of valves, operators, or control and instrumentation system whose pressure rating is less than the pressure test(s). If valve joints leak during pressure testing, loosen or remove the nuts and bolts, reseat or replace the gasket, reinstall or retighten the bolts and nuts and hydrostatically retest the joints.

I. Following installation, all aboveground valves shall be painted in accordance with the painting system specified in accordance with manufacturer’s recommendations. Following installation of buried valves or valves installed in valve vaults, repair any scratches, marks and other types of surface damage, etc., with a coating equal to the original coating supplied by the manufacturer. Prior to backfilling, all nuts, bolts and other parts of the valve joints shall be coated with two coats, 10 mils DFT per coat, of coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M.

3.09 SEPARATION OF NON-POTABLE WATER MAINS AND POTABLE WATER MAINS

A. Reclaimed water mains shall be installed with at least a 3 foot horizontal separation from any potable water main. Force mains and gravity sewers shall have a 6 foot separation from potable mains. At crossings the installation shall provide of a minimum vertical separation distance of 12 inches between the outside of the crossing non-potable and potable water mains. This separation shall be provided where the potable water main is either below or above the non-potable water main. When the 12 inch minimum vertical separation distance cannot be maintained, the potable water main shall be encased in concrete. Concrete encasement shall be as
specified above. The potable water main shall be encased for 10 feet each way of the crossing.

3.10 MAIN CLEANING AND FLUSHING

A. Following the hydrostatic and leakage tests, all the mains constructed under this contract shall be cleaned and flushed to remove sand, loose dirt and other debris. Flushing velocity shall be a minimum of 2.5 fps. Flushing shall continue until clean water flows from the main. However, the Contractor shall endeavor to use the minimum amount of flushing water required to complete the work. To increase the efficiency of the cleaning and flushing operation, the Contractor shall use a pipeline pigging device of the proper size and designed to clean the intended pipeline. The pigging device shall be capable of turning through a standard 90 degree MJ bend. The type of pipeline pigging device and the method of operation shall be approved by the Engineer.

B. Upon completion of testing for the gravity drain line system, drain lines shall be flushed to remove dirt, sand, stones and other debris which may have entered the lines during construction and settled out in the lines and manholes. Materials and debris flushed from the drain lines shall be removed from a downstream manhole or basin and disposed of at an approved disposal area.

C. Water for flushing shall be clean water provided by the Contractor from a source approved by the Engineer and the owner prior to beginning connections for flushing operations. Flushing shall only be completed upon approval by the Owner.

D. Temporary blow offs may be required for the purpose of flushing mains. Temporary blow offs shall be installed as close as possible to the ends of the main being flushed. Blow offs installed on the main shall be the same diameter as the main. Temporary blow offs shall be removed and plugged after the main is flushed. All costs for installing and removing temporary blow offs shall be at an additional cost to the Owner.

E. The Owner shall be notified at least 3 working days prior to flushing mains.

F. Blow offs and temporary drainage piping used for flushing shall not be discharged into any gravity sewer or pumping station wetwell. The Contractor shall obtain prior approvals from the Engineer and the Owner as to the methods and locations of flushing water discharge.

3.11 INSTALLATION OF TIE RODS

A. Tie rods shall be installed in strict accordance with the manufacturer’s written installation requirements. Unless otherwise indicated on the Drawings, the size and number of tie rods for a joint or installation shall be as recommended by the manufacturer’s design chart for a working pressure of 150 psi.
B. Following installation and prior to backfilling, all parts of the tie rod joint restraint system, including tie rods, tie bolts, nuts, washers, and other fasteners, shall be coated with two coats, 10 mils DFT per coat, of coal tar epoxy equal to Kop-Coat Bitumastic No. 300-M.

3.12 INSTALLATION OF REDUCED PRESSURE BACKFLOW PREVENTERS

A. Backflow preventers shall be installed at the locations shown on the Drawings. Backflow preventers shall be installed in accordance with the manufacturer's written installation instructions and as shown on the Drawings.

B. Reduced pressure principle backflow preventers shall be installed horizontally with an 18 inch minimum clearance between the finished grade and the lowest point on the bottom of the unit. Reduced pressure backflow preventers shall be installed with provisions for a suitable drain arrangement to drain off discharges from the relief valve, so that discharges are not objectionable. Backflow preventers shall be installed such that they are easily accessible for testing, maintenance and repair.

C. Piping and fittings for units 3 inches and larger in size shall have flanged joints. Piping, fittings and valves shall be properly supported with pipe support stands as shown on the Drawings.

D. Following installation of the reduced pressure backflow preventer, piping, fittings and valves, the entire aboveground assembly shall be finished painted in accordance with manufacturer’s recommendations.

END OF SECTION
SECTION 16050
BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 GENERAL

1.01 SUBMITTALS

A. Shop Drawings: All electrical devices, equipment, wiring, and items included in Division 16, Electrical, which are applicable to the projects.

1.02 QUALITY ASSURANCE

A. UL Compliance: Materials manufactured within scope of Underwriters Laboratories shall conform to UL Standards and have an applied UL listing mark.

B. Hazardous Areas: Materials and devices shall be specifically approved for hazardous areas of the class, division, and group shown and of a construction that will ensure safe performance when properly used and maintained.

C. Manufacturers listed are representative of quality of equipment to be provided for this Contract.

1.03 SPARE PARTS

A. Furnish, tag, and box for shipment and storage and deliver prior to 100 percent Project completion the following spare parts:

1. Fuses, 0 to 600 Volts: Six of each type and each current rating installed.

PART 2 PRODUCTS

2.01 OUTLET AND DEVICE BOXES

A. Sheet Steel: One-piece drawn type, zinc- or cadmium-plated.

B. Cast Metal:

1. Box: Cast ferrous metal.

2. Cover: Gasketed, weatherproof, cast ferrous metal, with stainless steel screws.

3. Hubs: Threaded.

4. Lugs (Cast Mounting):
 a. Crouse-Hinds; Type FS or FD.
 b. Appleton; Type FS or FD.
 c. Or equal.
C. Cast Aluminum:

1. Material:
 a. Box: Cast, copper-free aluminum.
 b. Cover: Gasketed, weatherproof, cast copper-free aluminum with stainless steel screws.
2. Hubs: Threaded.
3. Lugs: Cast mounting.
4. Manufacturers:
 a. Crouse-Hinds; Type FS-SA or FD-SA.
 b. Appleton; Type FS or FD.
 c. Or equal.

D. PVC-Coated Steel:

1. Type: One-piece.
3. Coating: All surfaces; 40-mil PVC.
4. Manufacturer:
 a. Appleton.
 b. Or equal.

2.02 JUNCTION AND PULL BOXES

A. Outlet Boxes Used as Junction or Pull Box: As specified under Article Outlet and Device Boxes.

B. Large Sheet Steel Box: NEMA 250, Type 1.

2. Cover: Full access, screw type.

C. Large Stainless Steel Box: NEMA 250, Type 4X.

1. Box: 12-gauge, ASTM A240, Type 304 stainless steel.
2. Cover: Hinged with screws.
4. Manufacturers:
 b. Robroy Industries.
 c. Or equal.

D. Junction Boxes:

1. Box: PVC.
2. Cover: PVC.
3. Rating: NEMA 1, 2, 3R, 4, 4X, 6, 6P, 12, 13.
4. Manufacturers:
 a. IPEX, Scepter JBox.
 b. Or equal.

2.03 WIRING DEVICES

A. Switches:
 1. NEMA WD 1 and FS W-S-896E.
 2. Specification grade, totally-enclosed, ac type, with quiet tumbler switches and screw terminals.
 3. Capable of controlling 100 percent tungsten filament and fluorescent lamp loads.
 5. Color: Match existing
 6. Manufacturers:
 a. Leviton.
 b. Hubbell.
 c. Pass and Seymour.

B. Receptacle, Single and Duplex:
 1. NEMA WD 1 and FS W-C-596.
 2. Specification grade, two-pole, three-wire grounding type with screw type wire terminals suitable for No. 10 AWG.
 3. High strength, thermoplastic base color.
 5. Contact Arrangement: Contact to be made on two sides of each inserted blade without detent.
 7. Manufacturers:
 a. Leviton.
 b. Hubbell.
 c. Pass and Seymour.

C. Receptacle, Ground Fault Interrupter: Duplex, specification grade, tripping at 5 mA.
 2. Rating: 125 volts, NEMA WD 1, Configuration 5-20R, 20 amps, capable of interrupting 5,000 amps without damage.
 3. Size: For 2-inch by 4-inch outlet boxes.
 4. Standard Model: NEMA WD 1, with No. 12 AWG copper USE/RHH/RHW-XLPE insulated pigtails and provisions for testing.
 5. Feed-Through Model: NEMA WD 1, with No. 12 AWG copper USE/RHH/RHW-XLPE insulated pigtails and provisions for testing.
6. Manufacturers:
 a. Pass and Seymour.
 b. Leviton.
 c. Hubbel.

2.04 DEVICE PLATES

A. General: Sectional type plates not permitted.

B. Metal:
 1. Material: Specification grade, one-piece, 0.040-inch nominal thickness stainless steel.
 3. Mounting Screw: Oval-head, finish matched to plate.

C. Weatherproof:
 1. For Receptacles: Gasketed, cast metal or stainless steel, with individual cap over each receptacle opening.
 b. Cap Spring: Stainless steel.
 c. Manufacturers:
 1) Leviton.
 2) Hubbell.
 3) Pass and Seymour
 2. For Switches: Gasketed, cast metal incorporating external operator for internal switch.
 b. Manufacturers:
 1) Crouse-Hinds; DS-181 or DS-185.
 2) Appleton; FSK-1VTS or FSK-1VS.
 3) Or equal.

D. Raised Sheet Metal: 1/2-inch high zinc- or cadmium-plated steel designed for one-piece drawn type sheet steel boxes.

2.05 CIRCUIT BREAKER, INDIVIDUAL, 0 TO 600 VOLTS

A. NEMA AB 1, UL 489 listed for use at location of installation.

B. Minimum Interrupt Rating: As shown.

C. Thermal-magnetic, quick-make, quick-break, indicating type, showing ON/OFF and TRIPPED indicating positions of the operating handle.

D. Suitable for use with 75 degrees C wire at full NFPA 70, 75 degrees C ampacity.
E. Locking: Provisions for padlocking handle.

F. Multipole breakers to automatically open all poles when an overload occurs on one-pole.

G. Enclosure: NEMA 250, Type 12, Industrial and Exterior Use, 4X, Corrosive, unless otherwise shown.

H. Interlock: Enclosure and switch shall interlock to prevent opening cover with switch in the ON position.

I. Do not provide single-pole circuit breakers with handle ties where multipole circuit breakers are shown. Replace existing devices as required.

2.06 FUSED SWITCH, INDIVIDUAL, 0 TO 600 VOLTS

A. UL 98 listed for use and location of installation.

B. NEMA KS 1 and UL 98 Listed for application to system with available short-circuit current amps rms symmetrical as required.

C. Quick-make, quick-break, motor rated, load-break, heavy-duty (HD) type with external markings clearly indicating ON/OFF positions.

D. Suitable for use with 75 degrees C wire at full NFPA 70, 75 degrees C ampacity.

E. Fuse mountings shall reject Class H fuses and accept only current-limiting fuses specified.

F. Enclosure: NEMA 250, Type 12, Industrial and Exterior Use, 4X, Corrosive, unless otherwise shown.

G. Interlock: Enclosure and switch to prevent opening cover with switch in the ON position.

2.07 NONFUSED SWITCH, INDIVIDUAL, 0 TO 600 VOLTS

A. NEMA KS 1.

B. Quick-make, quick-break, motor rated, load-break, heavy-duty (HD) type with external markings clearly indicating ON/OFF positions.

C. Suitable for use with 75 degrees C wire at full NFPA 70, 75 degrees C ampacity.

D. Enclosure: NEMA 250, Type 12, Industrial and Exterior Use, 4X, Corrosive, unless otherwise shown.
E. Interlock: Enclosure and switch to prevent opening cover with switch in the ON position.

2.08 FUSE, 0 TO 600 VOLTS

A. Current-limiting, with 200,000 ampere rms interrupting rating.

B. Provide to fit mountings specified with switches and features to reject Class H fuses.

C. Motor and Transformer Circuits, 0- to 600-Volt:
 1. Amperage: 0 to 600.
 2. UL 198E, Class RK-1, dual element, with time delay.
 3. Manufacturers:
 a. Bussmann; Type LPS-RK.
 b. Littelfuse; Type LLS-RK.
 c. Or equal.

D. Motor and Transformer Circuits, 0- to 250-Volt:
 1. Amperage: 0 to 600.
 2. UL 198E, Class RK-1, dual element, with time delay.
 3. Manufacturers:
 a. Bussmann; Type LPN-RK.
 b. Littelfuse; Type LLN-RK.
 c. Or equal.

E. Feeder and Service Circuits, 0- to 600-Volt:
 1. Amperage: 0 to 600.
 2. UL 198E, Class RK-1, dual element, with time delay.
 3. Manufacturers:
 a. Bussmann; Type LPS-RK.
 b. Littelfuse; Type LLS-RK.
 c. Or equal.

F. Feeder and Service Circuits, 0- to 250-Volt:
 1. Amperage: 0 to 600.
 2. UL 198E, Class RK-1, dual element, with time delay.
 3. Manufacturers:
 a. Bussmann; Type LPN-RK.
 b. Littelfuse; Type LLN-RK.
 c. Or equal.

G. Feeder and Service Circuits, 0- to 600-Volt:
1. Amperage: 601 to 6,000.
2. UL 198C, Class L, double O-rings and silver links.
3. Manufacturers:
 a. Bussmann; Type KRP-C.
 b. Littelfuse; Type KLPC.
 c. Or equal.

2.09 PUSHBUTTON, INDICATING LIGHT, AND SELECTOR SWITCHES

A. Contact Rating: NEMA ICS 2, Type A600.
B. Selector Switch Operating Lever: Standard.
D. Pushbutton Color:
 1. ON or START: Black.
 2. OFF or STOP: Red.
E. Pushbuttons and selector switches lockable in the OFF position where indicated.
F. Legend Plate:
 1. Material: Aluminum.
 2. Engraving: 11 character/spaces on one line, 14 character/spaces on each of two lines, as required, indicating specific function.
G. Manufacturers:
 1. Heavy-Duty, Oiltight Type:
 a. General Electric; Type CR 104P.
 b. Square D; Type T.
 c. Cutler-Hammer; Type 10250T.
 2. Heavy-Duty, Watertight, and Corrosion-Resistant Type:
 a. Square D; Type SK.
 b. General Electric; Type CR 104P.
 c. Cutler-Hammer; Type E34.
 d. Crouse-Hinds; Type NCS.

2.10 TERMINAL JUNCTION BOX

A. Cover: Hinged, unless otherwise shown.
B. Terminal Blocks: Provide separate connection point for each conductor entering or leaving box.
1. Spare Terminal Points: 25 percent.

C. Interior Finish: Paint with white enamel or lacquer.

2.11 TERMINAL BLOCK (0 TO 600 VOLTS)

A. UL 486E and UL 1059.

B. Size components to allow insertion of necessary wire sizes.

C. Capable of termination of all control circuits entering or leaving equipment, panels, or boxes.

D. Screw clamp compression, dead front barrier type, with current bar providing direct contact with wire between the compression screw and yoke.

E. Yoke, current bar, and clamping screw of high strength and high conductivity metal.

F. Yoke shall guide all strands of wire into terminal.

G. Current bar shall ensure vibration-proof connection.

H. Terminals:
 1. Capable of wire connections without special preparation other than stripping.
 2. Capable of jumper installation with no loss of terminal or rail space.
 3. Individual, rail mounted.

I. Marking system allowing use of preprinted or field-marked tags.

J. Manufacturers:
 1. Phoenix.
 2. Ideal.
 3. Electrovert.

2.12 MAGNETIC CONTROL RELAY

A. NEMA ICS 2, Class A600 (600 volts, 10 amps continuous, 7,200VA make, 720VA break), industrial control with field convertible contacts.

B. Time Delay Relay Attachment
1. Pneumatic type, timer adjustable from 0.2 to 60 seconds (minimum).
2. Field convertible from ON delay to OFF delay and vice versa.

C. Latching Attachment: Mechanical latch having unlatching coil and coil clearing contacts.

D. Manufacturers:
 1. Cutler-Hammer; Type M-600.
 2. General Electric; Type CR120B.
 3. Square D.

2.13 ELAPSED TIME METER

A. Drive: Synchronous motor.
B. Range: 0 to 99,999.9 hours, nonreset type.
C. Mounting: Semiflush, panel.
D. Manufacturers:
 1. General Electric; Type 240, 2-1/2-inch Big Look.
 2. Eagle Signal; Bulletin 705.
 3. Square D.

2.14 SUPPORT AND FRAMING CHANNELS

A. Material: Rolled, stainless steel, 12-gauge.
B. Finish:
 1. All Areas: ASTM A167, Type 304 stainless steel.
C. Inserts: Continuous.
D. Beam Clamps: Gray cast iron.
E. Manufacturers:
 1. B-Line.
 2. Unistrut.
 3. Or equal.

2.15 NAMEPLATES

A. Material: Laminated plastic.
B. Attachment Screws: Stainless steel.

C. Color: White, engraved to a black core.

D. Engraving:
 1. Pushbuttons/Selector Switches: Name of drive controlled on one, two, or three lines, as required.
 2. Panelboards: Panelboard designation, service voltage, and phases.

E. Letter Height:
 2. Panelboards: 1/2 inch.

PART 3 EXECUTION

3.01 GENERAL
 A. Install equipment in accordance with NECA 5055.

3.02 OUTLET AND DEVICE BOXES
 A. Install suitable for conditions encountered at each outlet or device in the wiring or raceway system, sized to meet NFPA 70 requirements.
 B. Install plumb and level.
 C. Flush Mounted:
 1. Install with concealed conduit.
 2. Install proper type extension rings or plaster covers to make edges of boxes flush with finished surface.
 3. Holes in surrounding surface shall be no larger than required to receive box.
 D. Support boxes independently of conduit by attachment to building structure or structural member.
 E. Box Type (Steel Raceway System):
 1. Exterior Locations:
 a. Exposed Raceways: Cast aluminum.
 b. Concealed Raceways: Cast aluminum.
 c. Concrete Encased Raceways: Cast aluminum.
 d. Class I, II, or III Hazardous Areas: Cast aluminum.
 2. Interior Dry Air-Conditioned Locations:
 a. Exposed Rigid Conduit: Cast metal.
 b. Exposed EMT: Sheet steel.
c. Concealed Raceways: Sheet steel.
d. Concrete Encased Raceways: Cast metal.
e. Lighting Circuits, Ceiling: Sheet steel.
f. Class I, II, or III Hazardous Areas: Cast metal.

3. Interior Wet Locations:
 a. Exposed Raceways: Cast aluminum.
 b. Concealed Raceways: Cast aluminum.
 c. Concrete Encased Raceways: Cast aluminum.
 d. Lighting Circuits, Ceiling: Cast aluminum.
 e. Class I, II, or III Hazardous Areas: Cast aluminum.

4. Cast-In-Place Concrete Slabs: Sheet steel.

F. Box Type, Corrosive Locations and Exterior on Roof to be aluminum.

3.03 JUNCTION AND PULL BOXES

A. Install in conduit runs at least every 150 feet or after the equivalent of three right-angle bends.

B. Use outlet boxes as junction and pull boxes wherever possible and allowed by applicable codes.

C. Installed boxes shall be accessible.

D. Do not install on finished surfaces.

E. Install plumb and level.

F. Support boxes independently of conduit by attachment to building structure or structural member.

3.04 WIRING DEVICES

A. Switches:

 1. Mounting Height: See Article Outlet and Device Boxes.
 2. Install with switch operation in vertical position.
 3. Install single-pole, two-way switches such that toggle is in up position when switch is on.

3.05 TERMINAL JUNCTION BOX

A. Install in accordance with Article Junction and Pull Boxes.

B. Label each block and terminal with permanently attached, nondestructible tag.

C. Do not install on finished outdoor surfaces.

D. Location:
1. Finished, Indoor, Dry: NEMA 250, Type 1.
2. Unfinished, Indoor, Dry: NEMA 250, Type 12.

END OF SECTION
PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. Extent of raceways is indicated by drawings and schedules. Types of raceways in this section include the following:

1. Electrical Metallic Tubing
2. Flexible Metal Conduit
3. Intermediate Metal Conduit
4. Liquid-Tight Flexible Metal Conduit
5. Rigid Metal Conduit
6. Rigid Nonmetallic Conduit
7. Surface Metal Raceways

B. NEMA Compliance. Comply with applicable requirements to NEMA standards pertaining to raceways.

C. UL Compliance and Labeling. Comply with provisions of UL safety standards pertaining to electrical raceway systems; and provide products and components which have been UL listed and labeled.

D. NEC Compliance. Comply with requirements as applicable to construction and installation of raceway systems.

1.02 METAL CONDUIT AND TUBING

A. General. Provide metal conduit, tubing and fittings of types, grades, sizes and weights (wall thicknesses) for each service indicated. Where types and grades are not indicated, provide proper selection determined by installer to fulfill wiring requirements, and comply with applicable portions of NEC for raceways.

1. Rigid Steel Conduit. FS WW-C-0581 and ANSI C80.1.
2. Rigid Metal Conduit Fittings. FS W-F-408.
3. Use Type 1 Fittings for rain-tight connections.
4. Use Type 1 Fittings for concrete tight connections.
5. Use Type 3 Fittings for other miscellaneous connections.

NOTE: IN GENERAL EMT RACEWAYS SHALL NOT BE USED ON THIS PROJECT

B. EMT Fittings. FS W-F-408.
1. Use Type 1 Fittings for rain-tight connections.
2. Use Type 2 Fittings for concrete tight connections.
3. Use Type 3 Fittings for other miscellaneous connections.

C. Flexible Metal Conduits. FW WW-C-566, of the following type:

1. Type 2. Zinc-coated steel
2. Flexible Metal Conduit Fittings. FS W-F-406, Type 1, Class 1, and Style A.
3. Liquid-Tight Flexible Metal Conduit. Provide liquid-tight flexible metal conduit; construct of single strip, flexible, continuous, interlocked, and double-wrapped steel; galvanized inside and outside; coat with liquid-tight jacket of flexible polyvinyl chloride (PVC).

1.03 WIREWAYS

A. General. Provide electrical raceways of types, grades, sizes, weights (wall thicknesses), number of channels, for each type service indicated. Provide complete assembly of raceway including, but not necessarily limited to, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps and other components and accessories as needed for complete system. Where types and grades are not indicated, provide proper selection as determined by installer to fulfill wiring requirements, and comply with applicable provisions of NEC for electrical raceways.

PART 2 - PRODUCTS

2.01 INSTALLATION OF ELECTRICAL RACEWAYS

A. Install electrical raceways where indicated; in accordance with manufacturer's written instructions, applicable requirements of NEC and NECA "Standard of Installation", and comply with recognized industry practices.

B. Coordinate with other work, including metal can concrete deck work, as necessary to interface installation of electrical raceways and components with other work.

C. Coat under floor metal raceways with bitumastic type protective coating prior to placing concrete.

D. Level and square raceway runs, and install at proper elevations/heights.

E. Complete installation of electrical raceways before starting installation of cables/wires within raceways.

F. Install PVC-coated conduit and fittings in highly corrosive atmospheres, and elsewhere as indicated.
G. Install flexible conduit for motor connections and for other electrical equipment connections where subject to movement and vibration.

H. Install liquid-tight flexible conduit for connection of motors and for other electrical equipment where subject to movement and vibration and also where subject to one or more of the following conditions:

1. Exterior location, moist of humid atmosphere where condensate can be expected to accumulate, corrosive atmosphere, subjected to water spray, subjected to dripping oil, grease, or water.

I. Wherever possible, install horizontal raceway runs above water and steam piping.

END OF SECTION
PART 1 GENERAL

1.01 SUBMITTALS

A. Shop Drawings:

1. Wire and cable descriptive product information.
2. Wire and cable accessories descriptive product information.
3. Cable fault detection system descriptive product information.
5. Manufactured wire systems rating information.
6. Manufactured wire systems dimensional drawings.
7. Manufactured wire systems special fittings.
12. Busway-equipment interface information for equipment to be connected to busways.

B. Quality Control Submittals:

1. Certified Factory Test Report for conductors 600 volts and below.
2. Certified Factory Test Report per AEIC CS6, including AEIC qualification report for conductors above 600 volts.

1.02 UL COMPLIANCE

A. Materials manufactured within scope of Underwriters Laboratories shall conform to UL Standards and have an applied UL listing mark.

PART 2 PRODUCTS

2.01 CONDUCTORS 600 VOLTS AND BELOW

A. Conform to applicable requirements of NEMA WC 3, WC 5, and WC 7.

B. Conductor Type:

1. 120- and 277-Volt Circuits, No. 10 AWG and Smaller: Stranded copper.
2. All Other Circuits: Stranded copper.

C. Insulation: Type THHN/THWN, except for sizes No. 6 and larger, with XHHW insulation.
D. Flexible Cords and Cables:

1. Type SOW-A/50 with ethylene propylene rubber insulation in accordance with UL 62.
2. Conform to physical and minimum thickness requirements of NEMA WC 8.

2.02 600-VOLT RATED CABLE

A. General:

1. Type: TC, meeting requirements of UL 1277, including Vertical Tray Flame Test at 20,000 Btu/hr, and NFPA 70, Article 340, or UL 13 Listed Power Limited Circuit Cable meeting requirements of NFPA 70, Article 725.
2. Permanently and legibly marked with manufacturer's name, maximum working voltage for which cable was tested, type of cable, and UL listing mark.
3. Suitable for installation in open air, in cable trays, or conduit.
5. Overall Outer Jacket: PVC, flame-retardant, sunlight- and oil-resistant.

B. Type 3-No. 16 AWG, Twisted, Shielded Pair, Instrumentation Cable: Single pair, designed for noise rejection for process control, computer, or data log applications meeting NEMA WC 55 requirements.

1. Outer Jacket: 45-mil nominal thickness.
2. Individual Pair Shield: 1.35-mil, double-faced aluminum/synthetic polymer overlapped to provide 100 percent coverage.
3. Dimension: 0.31-inch nominal OD.
4. Conductors:
 a. Bare soft annealed copper, Class B, seven-strand concentric, meeting requirements of ASTM B8.
 b. 20 AWG, seven-strand tinned copper drain wire.
 c. Insulation: 15-mil nominal PVC.
 d. Jacket: 4-mil nominal nylon.
 e. Color Code: Pair conductors black and red.
5. Manufacturers:
 a. Okonite Co.
 b. Alpha Wire Corp.
 c. Or equal.

C. Type 4-No. 16 AWG, Twisted, Shielded Triad Instrumentation Cable: Single triad, designed for noise rejection for process control, computer, or data log applications meeting NEMA WC 55 requirements.

1. Outer Jacket: 45-mil nominal.
2. Individual Pair Shield: 1.35-mil, double-faced aluminum/synthetic polymer, overlapped to provide 100 percent coverage.
3. Dimension: 0.32-inch nominal OD.
4. Conductors:
 a. Bare soft annealed copper, Class B, seven-strand concentric, meeting requirements of ASTM B8.
 b. 20 AWG, seven-strand, tinned copper drain wire.
 c. Insulation: 15-mil nominal PVC.
 d. Jacket: 4-mil nylon.
 e. Color Code: Triad conductors black, red, and blue.
5. Manufacturers:
 a. Okonite Co.
 b. Alpha Wire Corp.
 c. Or equal.

D. Type 5-No. 18 AWG, Multi-Twisted, Shielded Pairs with a Common, Overall Shield Instrumentation Cable: Designed for use as instrumentation, process control, and computer cable, meeting NEMA WC 55 requirements.

1. Conductors:
 a. Bare soft annealed copper, Class B, seven-strand concentric, in accordance with ASTM B8.
 b. Tinned copper drain wires.
 c. Pair drain wire size AWG 20, group drain wire size AWG 18.
 d. Insulation: 15-mil PVC.
 e. Jacket: 4-mil nylon.
 f. Color Code: Pair conductors black and red with red conductor numerically printed for group identification.
 g. Individual Pair Shield: 1.35-mil, double-faced aluminum/synthetic polymer.
2. Cable Shield: 2.35-mil, double-faced aluminum/synthetic polymer, overlapped for 100 percent coverage.
3. Cable Sizes:

<table>
<thead>
<tr>
<th>Number of Pairs</th>
<th>Maximum Outside Diameter (inches)</th>
<th>Nominal Jacket Thickness (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.50</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>0.68</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>0.95</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>1.16</td>
<td>80</td>
</tr>
<tr>
<td>36</td>
<td>1.33</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>1.56</td>
<td>80</td>
</tr>
</tbody>
</table>

4. Manufacturers:
 a. Okonite Co.
b. Alpha Wire Corp.
c. Or equal.

2.03 GROUNDING CONDUCTORS

A. Equipment: Stranded copper with green, Type USE/RHH/RHW-XLPE or THHN/THWN, insulation.

B. Direct Buried: Bare stranded copper.

2.04 ACCESSORIES FOR CONDUCTORS 600 VOLTS AND BELOW

A. Tape:

1. General Purpose, Flame Retardant: 7-mil, vinyl plastic, Scotch Brand 33, rated for 90 degrees C minimum, meeting requirements of UL 510.
3. Arc and Fireproofing:
 a. 30-mil, elastomer.
 b. Manufacturers and Products:
 1) Scotch; Brand 77, with Scotch Brand 69 glass cloth tapebinder.
 2) Plymount; Plyarc 30, with Plymount Plyglas glass cloth tapebinder.
 3) Or equal.

B. Identification Devices:

1. Sleeve: Permanent, PVC, yellow or white, with legible machine-printed black markings.
2. Marker Plate: Nylon, with legible designations permanently hot stamped on plate.

C. Connectors and Terminations:

1. Nylon, Self-Insulated Crimp Connectors:
 a. Manufacturers and Products:
 1) Thomas & Betts; Sta-Kon.
 2) Burndy; Insulink.
 3) ILSCO.
2. Nylon, Self-Insulated, Crimp Locking-Fork, Torque-Type Terminator:
 a. Manufacturers and Products:
 1) Thomas & Betts; Sta-Kon.
 2) Burndy; Insulink.
3) ILSCO.

D. Cable Lugs:
 1. In accordance with NEMA CC 1.
 2. Rated 600 volts of same material as conductor metal.
 3. Insulated, Locking-Fork, Compression Lugs:
 a. Manufacturers and Products:
 1) Thomas & Betts; Sta-Kon.
 2) ILSCO; ILSCONS.
 3) Or equal.
 4. Uninsulated Crimp Connectors and Terminators:
 a. Manufacturers and Products:
 1) Square D; Versitide.
 2) Thomas & Betts; Color-Keyed.
 3) ILSCO.
 5. Uninsulated, Bolted, Two-Way Connectors and Terminators:
 a. Manufacturers and Products:
 1) Thomas & Betts; Locktite.
 2) Brundy; Quiklug.
 3) ILSCO.

E. Cable Ties: Nylon, adjustable, self-locking, and reusable.
 1. Manufacturer and Product:
 a. Thomas & Betts; TY-RAP.
 b. Or equal.

F. Heat Shrinkable Insulation: Thermally stabilized, crosslinked polyofin.
 1. Manufacturer and Product:
 a. Thomas & Betts; SHRINK-KON.
 b. Or equal.

2.05 PULLING COMPOUND

A. Nontoxic, noncorrosive, noncombustible, nonflammable, wax-based lubricant; UL listed.

B. Suitable for rubber, neoprene, PVC, polyethylene, hypalon, CPE, and lead-covered wire and cable.

C. Suitable for zinc-coated steel, aluminum, PVC, bituminized fiber, and fiberglass raceways.

D. Manufacturers and Products:
 1. Ideal Co.; Yellow 77.
2. Polywater, Inc.
3. Cable Grip Co.

2.06 BUSWAY

A. Low impedance, copper bus bar, indoor type with full neutral and internal ground bus.

B. UL listed for support and spacing provided, meeting NFPA 70 requirements, and totally-enclosed throughout its length.

C. Suitable for mounting in vertical (edgewise) or horizontal position without derating, and capable of withstanding short-circuit of 50,000 amperes.

2.07 WARNING TAPE

A. As noted in Section 16130, Raceways.

2.08 SOURCE QUALITY CONTROL

A. Conductors 600-Volts and Below: Test in accordance with UL 44 and 854 Standards.

B. Conductors Above 600 Volts: Test in accordance with NEMA WC 8 and AEIC CS 6 partial discharge level test for EPR insulated cable.

PART 3 EXECUTION

3.01 GENERAL

A. Conductor installation to be in accordance with NECA 5055.

B. No aluminum wiring shall be permitted. Conductors shall be No. 12 AWG minimum, except that branch homeruns over 50 feet long shall be No. 10 AWG for 120/208V circuits. Wire in vicinity of heat-producing equipment shall be type XHHW insulation. All wiring shall be manufactured in the USA and of 98 percent resistivity.

C. All copper taps and splices in No. 8 AWG or smaller wire shall be fastened together by means of “wire nut” connectors (Ideal or accepted substitution). All taps and splices in wire larger than No. 8 AWG shall be made with compression type connectors and taped to provide insulation equal to wire. All taps and splices in manholes or in ground pull box shall be made with compression type connectors and covered with Raychem heavy wall cable sleeves (type CTE or WCS) with type “S” sealant coating. Sleeve kits as per manufacturer’s installation instructions shall be provided.
D. All power feeders and branch circuits No. 8 AWG and smaller shall be installed with color-coded wire with the same color used for a system throughout the building. Power feeders above No. 8 AWG shall either be fully color-coded or shall have black insulation and be similarly color-coded with tape or paint in all junction boxes and panels. Type shall cover the conductor insulation within the box or panel in such a manner to allow standard markings to be readily observed.

E. Multi conductor cabling shall not be allowed.

3.02 POWER CONDUCTOR COLOR CODING

A. Conductors 600 Volts and Below:

1. No. 8 AWG and Smaller: Provide colored conductors.
2. Colors:

<table>
<thead>
<tr>
<th>System</th>
<th>Conductor</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Systems</td>
<td>Equipment Grounding</td>
<td>Green</td>
</tr>
<tr>
<td>240/120 Volts</td>
<td>Grounded Neutral</td>
<td>White</td>
</tr>
<tr>
<td>Single-Phase, Three-Wire</td>
<td>One Hot Leg</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Other Hot Leg</td>
<td>Red</td>
</tr>
<tr>
<td>208Y/120 Volts</td>
<td>Grounded Neutral</td>
<td>White</td>
</tr>
<tr>
<td>Three-Phase, Four-Wire</td>
<td>Phase A</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Phase B</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Phase C</td>
<td>Blue</td>
</tr>
<tr>
<td>240/120 Volts</td>
<td>Grounded Neutral</td>
<td>White</td>
</tr>
<tr>
<td>Three-Phase, Four-Wire</td>
<td>Phase A</td>
<td>Black</td>
</tr>
<tr>
<td>Delta, Center Tap</td>
<td>High (wild) Leg</td>
<td>Orange</td>
</tr>
<tr>
<td>Ground on Single-Phase</td>
<td>Phase C</td>
<td>Blue</td>
</tr>
<tr>
<td>480Y/277 Volts</td>
<td>Grounded Neutral</td>
<td>Light Grey</td>
</tr>
<tr>
<td>Three-Phase, Four-Wire</td>
<td>Phase A</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>Phase B</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>Phase C</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

NOTE: Phase A, B, C implies direction of positive phase rotation.

3. Tracer: Outer covering of white with an identifiable colored strip other than green in accordance with NFPA 70.

B. Conductors Above 600 Volts:

1. Colors:
 b. Phase A: Brown.
 c. Phase B: Orange.
 d. Phase C: Yellow
3.03 CIRCUIT IDENTIFICATION

A. Circuit Designation:
 1. Assign circuit name based on device or equipment at load end of circuit.
 2. Where this would result in same name being assigned to more than one circuit, add number or letter to each otherwise identical circuit name to make it unique.

B. Method:
 1. Conductors No. 3 AWG and Smaller: Identify with sleeves.
 2. Cables, and Conductors No. 2 AWG and Larger:
 a. Identify with marker plates.
 b. Attach marker plates with nylon tie cord.
 3. Taped-on markers or tags relying on adhesives not permitted.

3.04 BUSWAY

A. Install in strict accordance with manufacturer's recommendations and NFPA 70.

END OF SECTION
SECTION 16165
PANEL BOARDS

PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. Extent of panel board, load-center, and enclosure work, including cabinets and cut out boxes as indicated by drawings and schedules.

B. Types of panel boards and enclosures in this section include the following:

1. Lighting and appliance panel boards

C. Refer to other Section XIII sections for cable/wire, connectors and electrical raceway work required in conjunction with panel board and enclosures provide units which have been UL-listed and labeled.

D. NEC Compliance. Comply with NEC as applicable to installation of panel boards, cabinets, and cutout boxes.

1.02 SUBMITTALS

A. Products Data.

1. Submit manufacturer's data including specifications, installation instruction and general recommendations, for each type of panel board required. Include data substantiating that units comply with requirements. All panel boards to have 98% conductivity copper bussing, tin plated.

B. Shop Drawings.

2. Submit dimensioned drawings of panel boards and enclosures showing accurately scaled layouts of enclosures and required individual panel board devices, including but not necessarily limited to, circuit breakers, fusible switches, fuses, ground fault circuit interrupters and accessories.

PART 2 - PRODUCTS

2.01 Acceptable Manufacturer

A. Submit to compliance with requirements; provide products of one of the following (for each type of panel board and enclosure):
1. General Electric Company
2. Square D Company

PART 3 - EXECUTION

1.01 INSTALLATION OF PANEL BOARDS

A. General.

1. Install panel boards and enclosures where indicated, in accordance with manufacturer's written instruction, applicable requirements of NEC and NEMA's "Standard of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

2. Coordinate installation of panel boards and enclosures with cable and raceway installation work.

3. Anchor enclosures firmly to walls and structural surfaces, ensuring that they are permanently and mechanically secure.

4. Provide electrical connections within enclosures.

5. Fill out panel board's circuit directory card upon completion of installation work.

END OF SECTION
PART 1 GENERAL

1.01 SUBMITTALS

A. Submit product data on each suppressor type, indicating component values, part numbers, and conductor sizes. Include dimensional drawing for each, showing mounting arrangements.

B. Submit electrical single-line diagram showing location of each TVSS.

1.02 QUALITY ASSURANCE

A. UL Compliance and Labeling:

1. For power and signal circuits, TVSS devices shall comply with UL 1449 and complimentary listed to UL 1283 as an electromagnetic interference filter. Provide units that are listed and labeled by UL. Devices must comply with the latest NEMA LS1 and LS2 testing criteria.

2. For telephone data and signals circuit protection, TVSS devices shall comply with COMM CK7 - UL 497A for secondary connections for communication circuits, or UL 497B protectors for data communication and fire alarm circuits.

PART 2 PRODUCTS

2.01 GENERAL

A. All TVSS devices for power circuits, provided under this section, shall be the product of a single manufacturer. All data, telephone and signal devices shall be of a single manufacturer.

B. TVSS devices shall be capable of performance at ambient temperatures between minus 40 degrees C and 60 degrees C, at relative humidity ranging from 0 percent to 95 percent, and at altitudes ranging from sea level to 2,000 feet.
C. TVSS devices shall be fused to disconnect the suppressor from the electrical source should the suppressor fail. The fusing shall allow full surge handling capabilities and to afford safety protection from thermal overloads and short circuits.

D. Design TVSS devices for the specific type and voltage of the electrical service. Single-phase and three-phase wye-configured systems shall have L-N, L-G, and N-G protection. Grounded delta-configured systems shall have L-L and L-G protection.

E. Power Filter: The TVSS shall include a high frequency extended range power filter complimentary listed to UL 1283 as an electromagnetic interference filter.

F. The TVSS product shall have a fault rating equal to the panel it protects.

2.02 MANUFACTURER

A. Line Voltage:
 2. Joslyn
 4. APT

B. Data Telephone:
 1. EDCO
 2. Phoenix
 3. MTL

2.03 MAIN DISTRIBUTION TVSS

A. Provide TVSS meeting IEEE C62.41.1 and IEEE C62.41.2 Location in accordance with Category “C.”

B. Surge Current Capacity shall be Not Less than the Following: 150 KA per mode.

C. Suppressor housing shall be in an enclosure that has the same NEMA rating as the equipment it protects.
D. UL 1449 Maximum Suppression Voltage shall Not be More than:

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>Phase</th>
<th>L-L or L-N Suppression Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>208Y/120</td>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>240</td>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>480Y/277</td>
<td>3</td>
<td>800</td>
</tr>
</tbody>
</table>

2.04 PANELBOARD TVSS

A. Provide TVSS meeting IEEE C62.41.1 and IEEE C62.41.2 Location Category B.

B. Surge current capacity shall be not less than 100 KA.

C. Suppressor shall be in an enclosure that has the same NEMA rating as the panel it protects or the TVSS may be integral to a panelboard.

D. UL 1449 Maximum Clamp Voltage shall Not be More than:

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>Phase</th>
<th>L-L or L-N Clamp Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>208Y/120</td>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>240</td>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>480Y/277</td>
<td>3</td>
<td>800</td>
</tr>
</tbody>
</table>

2.05 ANNUNCIATION

A. Provide unit or separately mounted LED-type indication lights to show the normal and failed status of each module. Provide one normally open and one normally closed contacts which operate when the unit fails. Provide connection to the main PVC cabinet. Indicating light shall not just monitor “Power Applied.” The indicator light shall change color brightness level when MOV’s fail.
2.06 PAIRED CABLE DATA LINE INTERIOR SUPPRESSORS

A. Provide units meeting IEEE C62.41, Location Category A.

B. Use 1,500-watt silicon avalanche diodes between the protected conductor and earth ground.

C. Provide units with a maximum single impulse current rating of 80 amperes (10 by 1,000 microsecond-waveform).

D. Breakdown voltage shall match the circuit protected.

2.07 PAIRED CABLE DATA LINE EXTERIOR SUPPRESSORS

A. Provide units meeting IEEE C62.41, Location Category A.

B. Suppressors shall be a hybrid design with a minimum of three stages utilizing solid-state components.

C. Suppressors shall Meet or Exceed the Following Criteria:

1. Maximum single impulse current rating of 10,000 amperes (8 by 20 microsecond-waveform).
2. Pulse Life Rating: 3,000 amperes (8 by 20 microsecond-waveform): 2,000 occurrences.
3. Maximum clamping voltage at 10,000 amperes (8 by 20 microsecond current waveform), shall not exceed the peak of the normal applied signal voltage by 200 percent.

PART 3 EXECUTION

3.01 APPLICATION REQUIREMENTS

A. Install TVSS as follows:

1. Main Distribution TVSS located within 24 inches of the main device.
2. Panelboard TVSS in the panelboard or within 24 inches of the incoming feeder. Provide a 30A/3P device for 3-phase or 30/2 device for single phase.

B. Electronic Equipment Paired Cable Conductors: Install data line suppressors at the low voltage input and output of each piece of equipment, including telephone cable entrance. Connect device on the customer side of the cable entrance.

1. Use secondary protectors on lines that do not exit the structure.
2. Use primary protectors on lines that exit and enter the structure.
3.02 GENERAL INSTALLATION REQUIREMENTS

A. Install suppressors according to manufacturer’s recommendations.

B. Install suppressors directly to the cabinet which houses the circuit to be protected so that the suppressor leads are straight, twisted together and short, with all conductors laced, running directly to the point of connection within the panel, without loops or bends. If bends are unavoidable, no bend may exceed 90 degrees and bending radius may not be less than 6 inches.

C. Connecting wires shall be as short as possible with gently twisted conductors, tied together, to prevent separation. Connecting wires shall not exceed 24 inches in length at any point.

D. Field installed conductors shall be the same as specified for building wire, not smaller than No. 8 AWG and not larger than No. 4 AWG. Device leads shall not be longer than the length recommended by the manufacturer, unless specifically reviewed and approved by the manufacturer.

E. Provide integral disconnect switch or manufacturer’s recommended size circuit breaker for TVSS devices installed at main service entrance location, switchgear, and motor control centers. Provide dedicated circuit breakers with number of poles as required, as disconnecting means for TVSS devices installed at panelboards. The interrupting capacity of the circuit breakers shall be that specified for the other breakers at that location. The TVSS device shall have an interrupting equal or greater than the panel being protected.

END OF SECTION
PART 1 GENERAL

1.01 SUBMITTALS
 A. Shop Drawings:
 1. Product Data:
 a. Exothermic weld connectors.
 b. Mechanical connectors.
 c. Compression connectors.

1.02 UL COMPLIANCE
 A. Materials manufactured within scope of Underwriters Laboratories shall conform to UL Standards and have an applied UL listing mark.

PART 2 PRODUCTS

2.01 GROUND ROD
 A. Material: Copper-clad steel.
 B. Diameter: Minimum ¾ inch.
 C. Length: 30 feet, minimum.

2.02 GROUND CONDUCTORS
 A. As stated in Section 16120, Conductors.

2.03 CONNECTORS
 A. Exothermic Weld Type:
 1. Outdoor Weld: Suitable for exposure to elements or direct burial.
 2. Indoor Weld: Utilize low-smoke, low-emission process.
 3. Manufacturers:
 a. Erico Products, Inc.; Cadweld and Cadweld Exolon.
 b. Thermoweld.
 c. Or equal.
2.04 GROUNDING WELLS

A. Ground rod box complete with cast iron riser ring and traffic cover marked “GROUND ROD” or “GROUND CONNECTION” for cadweld splices. Size shall be provided to allow a clamp-on meter within the box and around the rod for measurement.

B. Manufacturers:

3. Brooks Box Concrete Products.

PART 3 EXECUTION

3.01 GENERAL

A. Grounding shall be in compliance with NFPA 70 and ANSI C2.

B. Ground electrical service neutral at service entrance equipment to supplementary grounding electrodes.

C. Ground each separately derived system neutral to nearest effectively grounded building structural steel member or separate grounding electrode.

D. Bond together system neutrals, service equipment enclosures, exposed noncurrent-carrying metal parts of electrical equipment, metal raceways, ground conductor in raceways and cables, receptacle ground connections, and metal piping systems.

E. Shielded Power Cables: Ground shields at each splice or termination in accordance with recommendations of splice or termination manufacturer.

F. Shielded Control Cables:

1. Ground shield to ground bus at power supply for analog signal.
2. Expose shield minimum 1 inch at termination to field instrument and apply heat shrink tube.
3. Do not ground control cable shield at more than one point.

G. Existing ground conductors shall be compliant to the current NEC Section 250.

END OF SECTION